摘 要: | 定理 若x、y、a、b均为实数 ,且a>0 ,b >0 ,那么 x2a +y2b ≥ (x+y) 2a +b (※ )等号成立当且仅当 xa= yb .证明 不等式 (bx-ay) 2 ≥ 0显然成立 ,当且仅当 xa =yb 时取等号 .从而b2 x2 - 2abxy +a2 y2 ≥0 ,所以b2 x2 +a2 y2 ≥ 2abxy .不等式两边都加上abx2 +aby2 ,得abx2 +a2 y2 +b2 x2 +aby2 ≥abx2+2abxy+aby2 ,所以 (a+b) (bx2 +ay2 ) ≥ab(x +y) 2 .因为a >0 ,b>0 ,所以 x2a +y2b ≥ (x +y) 2a+b .不等式 (※ )结构规范 ,对称和谐 ,形式…
|