首页 | 本学科首页   官方微博 | 高级检索  
     

基于SVM的实时自动超声钢轨伤损检测分类系统
引用本文:郝炜,李成桐. 基于SVM的实时自动超声钢轨伤损检测分类系统[J]. 中国科学院研究生院学报, 2009, 26(4): 517-521
作者姓名:郝炜  李成桐
作者单位:1. 中国科学院空间科学与应用研究中心,北京,100080
2. 北京博速公司,北京,100088
摘    要:介绍了一个更有效的基于支持向量机的实时超声波钢轨伤损自动检测分类系统.根据钢轨伤损的特点提取特征量,利用基于支持向量机的分类预测算法实现钢轨伤损的实时检测分类,并基于统计处理的计算伤损尺寸.在嵌入式系统DSP中利用该机器学习算法实现了伤损的实时处理和测试.实现了钢轨伤损实时报警、显示伤损类型、所处轨内位置及程度.

关 键 词:模式识别  超声波钢轨探伤  支持向量机  DSP实时信号处理
修稿时间:2009-04-13

Automatic real-time SVM-based ultrasonic rail flaw detection and classification system
HAO Wei,LI Cheng-Tong. Automatic real-time SVM-based ultrasonic rail flaw detection and classification system[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2009, 26(4): 517-521
Authors:HAO Wei  LI Cheng-Tong
Affiliation:1 Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100080,China; 2 Bosoon Software Co. Ltd, Beijing 100088, China
Abstract:This paper describes a more efficient real time SVM(support vector machine)-based ultrasonic rail defect detection and classification system. Feature extraction is achieved based on the attribute of ultrasonic rail defect and then SVM classification prediction algorithm and statistical processing are used to realize classification and calculating the size of the rail defect. This machine learning algorithm is tested in DSP and the type, grade and location of the defects are displayed in real-time.
Keywords:pattern recognition  ultrasonic rail flaw detection  support vector machine (SVM)  DSPreal-time signal processing
本文献已被 万方数据 等数据库收录!
点击此处可从《中国科学院研究生院学报》浏览原始摘要信息
点击此处可从《中国科学院研究生院学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号