首页 | 本学科首页   官方微博 | 高级检索  
     

基于K-means聚类挖掘智能机器人领域技术创新人才
引用本文:赵宁,赵翀,翟凤勇,刘伟,郭伟. 基于K-means聚类挖掘智能机器人领域技术创新人才[J]. 新世纪图书馆, 2020, 0(3): 49-56
作者姓名:赵宁  赵翀  翟凤勇  刘伟  郭伟
作者单位:哈尔滨工业大学图书馆;哈尔滨工业大学管理学院;哈尔滨联通公司;哈尔滨工业大学机器人研究所
基金项目:2018年ISTIC-CLARIVATEANALYTICS科学计量学联合实验室开放基金项目“基于专利分析对智能机器人领域创新人才的挖掘和评价”(项目编号:IC20180014)研究成果之一。
摘    要:以智能机器人领域为例,借助机器学习的方法挖掘技术创新人才,消除专家分类的主观性。通过专利信息构建技术创新人才评价指标体系,结合主成分分析、K-means聚类,进行技术创新人才有效分类;利用DWPI手工代码挖掘智能机器人领域对应的创新人员及相应的技术团队成员,对于技术创新人才分类有进一步优化空间。K-means聚类改进了传统的识别方法,突破人工统计的局限,可以处理数量级更大的数据,对数据挖掘可以进行及时、准确、直观的分析。

关 键 词:专利信息  聚类分析  技术创新人才  K-MEANS

Mining Technological Innovation Talents in Intelligent Robot Field Based on K-means Algorithms
Zhao Ning,Zhao Chong,Zhai Fengyong,Liu Wei,Guo Wei. Mining Technological Innovation Talents in Intelligent Robot Field Based on K-means Algorithms[J]. , 2020, 0(3): 49-56
Authors:Zhao Ning  Zhao Chong  Zhai Fengyong  Liu Wei  Guo Wei
Abstract:Taking the intelligent robot field as an example,by means of machine learning,the subjectivity of expert classification can be eliminated.The evaluation index system of technological innovation talents is constructed by patent information,and the effective classification of technological innovation talents is carried out by combining principal component analysis and K-means clustering.The corresponding innovation personnel and corresponding technical team members in the field of intelligent robot are mined by DWPI manual code,which has further optimization space for the classification of technological innovation talents.K-means clustering improves the traditional recognition method,breaks through the limitations of artificial statistics.It can deal with larger data of order of magnitude,and can analyze data mining timely,accurately and intuitively.
Keywords:Patent information  Cluster analysis  Technological innovative talents  K-means
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号