摘 要: | 函数与方程的思想是指在解决某些数学问题时,构造适当的函数与方程,把问题转化为研究辅助函数与辅助方程性质的思想·下面就结合2005年的高考试题,说明如何运用函数与方程的思想方法去分析和解决问题·例1设不等式2x-1>m(x2-1)对满足|m|≤2的一切实数m恒成立,求实数x的取值范围·解析:此问题由于常见的思维定势,易把它看成关于x的不等式进行分类讨论·然而,若变换一个角度以m为主元,记f(m)=(x2-1)m-(2x-1),则问题转化为求一次函数(或常数函数)f(m)的值在区间[-2,2]内恒负时参数x应该满足的条件·要使f(m)<0,只要使f(-2)<0,f(2)<0,即-2(x2-1)…
|