首页 | 本学科首页   官方微博 | 高级检索  
     

对称换元法求分式值
作者姓名:于志洪
摘    要:当题目中的未知数x、y具有对称关系时(即当x、y互换位置时,原式保持不变),如果令x y=a,xy=b,用换元法进行解答,就可以使解题过程更简单.下面通过几道例题,帮助同学们掌握这种解题技巧在分式求值中的妙用.例1若x-1x=1,则x3-1x3的值为().A.3B.4C.5D.6解:设1x=y,则x-y=1,xy=1,所以x3-1x3=x3-y3=(x-y)3 3xy(x-y)=13 3×1×1=4.故选B.例2若x2-5x 1=0,则x3 1x3=.解:由x2-5x 1=0,可知x≠0,故等式两边同除以x,得x 1x=5.设1x=y,则x y=5,xy=1,所以x3 1x3=x3 y3=(x y)3-3xy(x y)=53-3×1×5=110.例3已知ax a-x=2,那么a2x a-2x的值是().A.4B.3C.2D.6…

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号