改进的并行化谱聚类算法研究 |
| |
作者姓名: | 陈雪涛 |
| |
作者单位: | 四川财经职业学院 |
| |
摘 要: | 提出改进的并行化谱聚类算法。该算法对于距离矩阵与相似度矩阵进行了改进,并在其中加入了kd树技术以对大规模数据进行稀疏化处理;然后在进行数据特征计算时,将数据以拉普拉斯矩阵的方式存入Hadoop之中,通过运行Lanczos分布计算的形式得到了其向量特征;最后运用在聚类算法中的较为高效的k-means聚类算法对向量特征的转置矩阵进行处理从而得到了需要的聚类结果。仿真实验结果表明,本文所提出的谱聚类并行算法能够为大规模的数据挖掘工作带来性能的巨大提升。
|
本文献已被 CNKI 等数据库收录! |
|