首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络的高血压在线风险评估系统
引用本文:马光志,卢炎生,宋恩民,聂绍发,靖伟峰,张廆. 基于神经网络的高血压在线风险评估系统[J]. 东南大学学报, 2008, 24(3)
作者姓名:马光志  卢炎生  宋恩民  聂绍发  靖伟峰  张廆
作者单位:华中科技大学计算机科学与技术学院,武汉430074
基金项目:国家高技术研究发展计划(863计划)
摘    要:由于先前的研究工作不够综合和精确,不足于建立准确的高血压风险评估系统,根据2231个正常样本及823个高血压样本计算的信息增益,对高血压致病因素的重要程度进行了排序,总共建立和测试了42个不同的神经网络模型,发现了一个输入为26个致病因素的神经网络模型,其预测精度远高于先前研究取得的81.61%,该模型关于“是否高血压”、“收缩压”、“舒张压”的预测符合率分别为95.79%,98.22%和98.41%.基于发现的神经网络模型及面向对象的技术,开发了一个能自动收集新样本、学习新样本并能改进预测精度的高血压风险在线评估系统.

关 键 词:高血压预测  神经网络  信息增益

Neural network based online hypertension risk evaluation system
Ma Guangzhi,Lu Yansheng,Song Enmin,Nie Shaofa,Jing Weifeng,Zhang Wei. Neural network based online hypertension risk evaluation system[J]. Journal of Southeast University(English Edition), 2008, 24(3)
Authors:Ma Guangzhi  Lu Yansheng  Song Enmin  Nie Shaofa  Jing Weifeng  Zhang Wei
Abstract:Since the previous research works are not synthetic and accurate enough for building a precise hypertension risk evaluation system,by ranking the significances for hypertension factors according to the information gains on 2 231 normotensive and 823 hypertensive samples,totally 42 different neural network models are built and tested.The prediction accuracy of a model whose inputs are 26 factors is found to be much higher than the 81.61% obtained by previous research work. The prediction matching rates of the model for "hypertension or not","systolic blood pressure",and "diastolic blood pressure" are 95.79%,98.22% and 98.41%,respectively.Based on the found model and the object oriented techniques,an online hypertension risk evaluation system is developed,being able to gather new samples,learn the new samples,and improve its prediction accuracy automatically.
Keywords:hypertension prediction  neural network  information gain
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号