首页 | 本学科首页   官方微博 | 高级检索  
     

递推方法与递归函数
作者姓名:石涧  熊曾润
作者单位:安徽师范大学,江西赣州师范
摘    要:统编高中数学课本第三册第144页,有这样一道例题:“平面上有n条直线,其中任何两条不平行,任何三条不过同一点,证明这n条直线把平面分成f(n)=(1/2)(n~2+n+2)个部分。”课本是用数学归纳法证明的。可是解析表达式f(n)=(1/2)(n~2+n+2),究竟是怎样得出来的呢?也就是说,下面的问题该如何求解呢? 例1.平面上有n条直线,其中任何两条不平行,任何三条不共点,问这n条直线把平面分成多少个部分? 显然,这n条直线把平面分成的部分数,是由n决定的,是n的函数,记为f(n)。f(n)是定义在整个自然数集N上的函数,其取值集也是N。我们的问题,就是要求出f(n)依赖于n的解析表达式。为此,我们从n开头的几个值,来看一

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号