首页 | 本学科首页   官方微博 | 高级检索  
     

黎曼流形上微分形式的■类
作者姓名:韩晓盼
作者单位:河北大学数学与计算机学院;
摘    要:D.Franke等于2002年给出了黎曼流形上弱闭微分形式的■类定义,并利用这些类研究了A-调和张量和拟正则映射的一些性质.由于这些微分形式的WT类在几何函数论研究中有着重要作用,因此首先给出黎曼流形上一些新的微分形式类,称之为■和■类,然后利用D.Franke等人的思想方法给出A-调和张量与■类的关系,并利用Young不等式证明了■类与■类的等价关系,由这个等价关系推出A-调和张量的正则性性质.这些结果是经典结果的推广与发展,利用这些结果,可研究高维空间的几何函数论和映射问题.

关 键 词:黎曼流形  ■类  A-调和方程  
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号