摘 要: | 针对当前遥感影像特定目标识别效果较差的现状,基于深度学习网络对高分二号遥感影像特定目标进行准确识别。首先通过引入部分噪声增强样本数据建立样本库并在TensorFlow框架下配置Faster R-CNN网络学习目标特征建立可用于高分二号遥感影像特定目标识别的卷积网络。而后为判别深度学习网络的识别效果,选取遥感影像目标识别效果较好的约束能量最小化(constrained energy minimization,CEM)算法与之比较。最后在待识别遥感影像内生成房屋的包围框并标注识别房屋的置信度,得到总体房屋识别的置信度为95.61%以上。实验中CEM法房屋目标识别率为76.4%,而深度学习法可达到90.9%,深度学习法目标识别率比CEM法高14.5%。实验结果表明Faster R-CNN适用于高分二号遥感影像的特定目标识别,相较于CEM法识别率有明显提升。
|