基于检验检测-服务质量-长短期记忆网络-情感分析模型的检验检测服务质量评价研究 |
| |
引用本文: | 周靖宇,张健,陈进东. 基于检验检测-服务质量-长短期记忆网络-情感分析模型的检验检测服务质量评价研究[J]. 科技管理研究, 2023, 43(6) |
| |
作者姓名: | 周靖宇 张健 陈进东 |
| |
作者单位: | 北京信息科技大学,北京 100192;北京信息科技大学,北京 100192;绿色发展大数据决策北京市重点实验室,北京 100192;中国电子技术标准化研究院,北京 100007 |
| |
基金项目: | 国家重点研发项目“面向中小微企业的综合质量服务技术研发与应用”(项目编号:2019YFB1405300);北京市属高等学校优秀青年人才培育计划项目“中小微企业综合质量智能服务与优化技术研究”(BPHR202203233) |
| |
摘 要: | 为促进检验检测业服务质量提升,以检验检测(IT)服务质量评级和用户服务需求为切入点,采用基于长短期记忆网络(LSTM)的深度学习方法,设计由有形性、可靠性、响应性、安全性和移情性5个维度构成的评价体系,通过检验检测-服务质量-长短期记忆网络-情感分析模型(IT-QoS-LSTM-SA)对检验检测服务机构服务质量(QoS)进行评价与反馈,并利用7万多条相关文本数据进行实证。结果显示:LSTM模型在检验检测用户评论分类中的准确率达到了85.24%;根据情感分析(SA)计算得出检验检测服务质量的总评分为0.491 6,处于满意和非常满意程度之间。由此可以直观地看出检验检测服务质量在各项评价指标上的优劣程度。
|
关 键 词: | 服务质量评价 长短期记忆网络模型 深度学习 情感分析 检验检测业 |
收稿时间: | 2022-08-09 |
修稿时间: | 2023-04-16 |
Research on service quality evaluation of inspection and testing based on IT-QoS-LSTM-SA model |
| |
Abstract: | In order to promote the service quality of the inspection and testing (IT) industry, the IT service quality rating and user service demand are used as the entry point, and a deep learning method based on long and short-term memory network (LSTM) is adopted, an evaluation system including five dimensions: tangibility, reliability, responsiveness, security and empathy is designed, and the inspection and testing - service quality - long and short-term memory network - sentiment analysis model (IT -QoS-LSTM-SA) to evaluate and provide feedback on the quality of service (QoS) of IT service organizations, and more than 70,000 relevant text data are applied for empirical evidence. The results show that LSTM model achieves an accuracy rate of 85.24% in the classification of IT user reviews; the overall rating of IT service quality is 0.491 6 according to sentiment analysis (SA)., which is between satisfactory and very satisfactory . This can visually see the quality of IT services in the degree of merit of each evaluation index. |
| |
Keywords: | Valuation of the quality of service Inspection and testing industry Long short-term memory network model Deep learning Sentiment analysis |
本文献已被 万方数据 等数据库收录! |
| 点击此处可从《科技管理研究》浏览原始摘要信息 |
|
点击此处可从《科技管理研究》下载全文 |
|