首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Finite-size scaling of O(n) systems at the upper critical dimensionality
Authors:Jian-Ping Lv  Wanwan Xu  Yanan Sun  Kun Chen  Youjin Deng
Abstract:Logarithmic finite-size scaling of the O(n) universality class at the upper critical dimensionality (dc = 4) has a fundamental role in statistical and condensed-matter physics and important applications in various experimental systems. Here, we address this long-standing problem in the context of the n-vector model (n = 1, 2, 3) on periodic four-dimensional hypercubic lattices. We establish an explicit scaling form for the free-energy density, which simultaneously consists of a scaling term for the Gaussian fixed point and another term with multiplicative logarithmic corrections. In particular, we conjecture that the critical two-point correlation g(r, L), with L the linear size, exhibits a two-length behavior: follows governed by the Gaussian fixed point at shorter distances and enters a plateau at larger distances whose height decays as with a logarithmic correction exponent. Using extensive Monte Carlo simulations, we provide complementary evidence for the predictions through the finite-size scaling of observables, including the two-point correlation, the magnetic fluctuations at zero and nonzero Fourier modes and the Binder cumulant. Our work sheds light on the formulation of logarithmic finite-size scaling and has practical applications in experimental systems.
Keywords:critical phenomena  universality class  O(n) vector model  finite-size scaling
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号