巧用二项公式 |
| |
作者姓名: | 叶舜华 |
| |
作者单位: | 山西省灵石县一中 |
| |
摘 要: | 我们知道,当n是正整数时有即x~n-y~n能被x-y整除; 当n是正奇数时有 即x~n y~n能被x y整除. 我们感兴趣的是二项公式具有可整除性的特点,它能巧妙应用于证明等比数列前n项和的公式,数列递推通项公式,解某一类特殊方程,多项式因式分解,证某一类不等式等。 例1 证明等比数列前n项之和的公式 应用二项公式可以给出一种简捷的证法。 证明:设等比数列为 则 上式两边乘以(1-q), 得(1-q)S_n=a_1(1-q~n), ∴S_n=a_1(1-q~n)/1-q (q≠1).
|
本文献已被 CNKI 等数据库收录! |
|