首页 | 本学科首页   官方微博 | 高级检索  
     


Large eddy simulation for wind field analysis based on stabilized finite element method
Authors:Cheng HUANG  Yan BAO  Dai ZHOU  Jin-quan XU
Affiliation:School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract:In this paper, a stabilized finite element technique, actualized by streamline upwind Petrov-Galerkin (SUPG) stabilized method and three-step finite element method (FEM), for large eddy simulation (LES) is developed to predict the wind flow with high Reynolds numbers. Weak form of LES motion equation is combined with the SUPG stabilized term for the spatial finite element discretization. An explicit three-step scheme is implemented for the temporal discretization. For the numerical example of 2D wind flow over a square rib at Re=4.2×105, the Smagorinsky’s subgrid-scale (SSGS) model, the DSGS model, and the DSGS model with Cabot near-wall model are applied, and their results are analyzed and compared with experimental results. Furthermore, numerical examples of 3D wind flow around a surface-mounted cube with different Reynolds numbers are performed using DSGS model with Cabot near-wall model based on the present stabilized method to study the wind field and compared with experimental and numerical results. Finally, vortex structures for wind flow around a surface-mounted cube are studied by present numerical method. Stable and satisfactory results are obtained, which are consistent with most of the measurements even under coarse mesh.
Keywords:
本文献已被 维普 万方数据 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号