首页 | 本学科首页   官方微博 | 高级检索  
     

基于OTSCM模型的主题情感在线追踪
引用本文:刘玉文,刘月华,杨枢,张钰. 基于OTSCM模型的主题情感在线追踪[J]. 现代情报, 2017, 37(12): 35-41. DOI: 10.3969/j.issn.1008-0821.2017.12.006
作者姓名:刘玉文  刘月华  杨枢  张钰
作者单位:1. 蚌埠医学院卫生管理系, 安徽 蚌埠 233030;2. 中国科学技术大学综合国力信息监测中心, 安徽 合肥 230027
基金项目:国家自然科学基金项目"面向路径隐私保护的移动群智感知数据收集研究"(项目编号:61672038);安徽省高校人文科学重点项目"基于对比挖掘的医疗卫生网络舆情的发现、跟踪及倾向性分析"(项目编号:sk2015A405);安徽省高校自然科学重点项目"基于统计模型检验和风险分析的婴儿培养箱安全性评价关键技术研究"(项目编号:KJ2017A223)。
摘    要:网络舆论主题情感在线分析对舆情研判与管理起着十分重要的作用,当前的主题情感模型存在着主题与情感建模关系不紧密,情感挖掘偏斜等问题,容易造成舆情误判。文本在OLDA(On-Line Latent Dirichlet Allocation,OLDA)模型的基础上引入情感参数,并提出情感遗传思想,建立基于情感遗传的在线主题情感混合模型OTSCM(On-Line Topic and Sentiment Combining Model)。该模型把t-1时间片内的主题情感分布作为t时间片内主题情感分布的先验,通过构造主题情感演化矩阵,生成t时间片内文档—主题、主题—特征词以及主题—情感词3个分布,最后使用交叉熵方法计算t时间片内主题分布与t-1之前主题分布的相似度,得出t时间片内主题情感演化结果。本文在5个数据集上对OTSCM进行了验证,并与其它流行算法进行了对比,实验表明,文本方法在主题情感在线识别方面达到了良好的效果。

关 键 词:OLDA模型  主题情感  情感遗传  OTSCM模型  情感计算  情感演化  

OTSCM Approach for Tracking On-Line Sentiment of Topic
Liu Yuwen,Liu Yuehua,Yang Shu,Zhang Yu. OTSCM Approach for Tracking On-Line Sentiment of Topic[J]. , 2017, 37(12): 35-41. DOI: 10.3969/j.issn.1008-0821.2017.12.006
Authors:Liu Yuwen  Liu Yuehua  Yang Shu  Zhang Yu
Affiliation:1. Department of Health Management, Bengbu Medical College, Bengbu 233030, China;2. Comprehensive National Strength Information Monitoring Center, University of Science and Technology of China, Hefei 230000, China
Abstract:The on-line sentiment analysis of network topic plays an important role in the evaluation and management of public opinion.The current topic and sentiment models have a problem that the relationship between the topic and sentiment is not closely,which likely cause the deviation of sentiment mining and misjudgment of public opinion.This paper introduced the sentiment parameter into OLDA model and proposed a On-Line Topic and Sentiment Combining Model (OTSCM) based on sentiment genetic.This model made the topic and sentiment distribution of the t-1 time slice as a priori of the topic and sentiment distribution of t time slice.By constructing the topic and sentiment evolutionary matrix,the document-topic,topic-word and topic-sentiment 3 distributions were generated.The cross entropy method was used to calculate the similarity between the topic distribution of the t time slice and the t-1 time slice for getting the evolutionary result of t time slice.At last,OTSCM were validated on 5 data sets and compared with other state-of-the-art algorithms.Experiments showed that our approach had better performance.
Keywords:OLDA model  topic sentiment  sentiment genetic  OTSCM model  sentiment computing  sentiment evolution  
点击此处可从《现代情报》浏览原始摘要信息
点击此处可从《现代情报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号