摘 要: | 主元是相对于多个变元而言的 ,解题时要从多个变元中选择一个变元作为主元 ,而把其余变元看作已知量 ,即为主元法 .巧变主元 ,即从另一个方位重新思考问题 ,使问题迎刃而解 .本文通过典型例题的分析与求解 ,介绍主元变换的常用技巧 .一、主元确定 .若一个已知式有多个变元 ,从中确定一个与结论相关的变元或表达式为主元 ,可排除干扰 ,明确解题目标 .例 1 设对所有实数x ,不等式x2 log28(a 1 )a 2xlog22aa 1 log2(a 1 ) 2a2 >0恒成立 ,求实数a的取值范围 .分析与略解 :本题若用二次函数性质来解 ,较为复杂 ,若观察到各项系数中都含…
|