首页 | 本学科首页   官方微博 | 高级检索  
     

巧用数学对称美解题
作者姓名:黄伟军
摘    要:德国教育学家魏尔曾说:美与对称性紧密相关.对称是最能给人以美感的一种形式,它是整体中各个部分之间的匀称和对等.在数学上常常表现为数式或图形的对称,命题或结构的对偶或对应.在数学解题过程中,若能积极挖掘问题中隐含的对称性,巧妙地利用对称性,可使复杂的问题变得条理清楚,脉络分明,能化难为易、化繁为简.下面举例说明,供同学们在学习中参考.一、巧用数式结构对称解题数式结构的对称,必将蕴含着解法(证法)的对称.从而,具有相同结构特征的数式具有同等的地位,处理的手法必将相同.从数学中的对称美的角度出发,常能优化解题思路和简化解题过程.例1已知x y z=a,x、y、z∈R,求证:x2 y2 z2≥a32.分析由题意可知x、y、z三个元素地位一样,这是关于x、y、z的轮换对称式,因此可以采用均值代换法,即利用x、y、z与它们的算术平均值3a的关系进行换元,从而快速得到了证明的思路.证明设x=3a α,y=3a β,z=3a λ,由已知得α β λ=0.x2 y2 z2=(3a α)2 (3a β)2 (3a λ)2=a32 2a3(α β λ) α2 β2 λ2=a32 α2 β2 λ2≥a32.例2试比较20062007...

本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号