首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
结合多信息的概率矩阵分解模型
作者姓名:
古来
黄俊
张若凡
古智星
许二敏
作者单位:
重庆邮电大学 通信与信息工程学院,重庆 400065
摘 要:
为了改善传统协同过滤推荐算法的冷启动与数据稀疏问题,基于概率矩阵分解模型,将用户属性、物品关系与时序行为融合到模型中,通过不断调整3种模型所占权重,得到最小的RMSE值。在Movielens数据集上进行实验,并与其它相关算法的RMSE值进行比较。实验结果表明,结合多信息的概率矩阵分解模型的RMSE值低于其它推荐方法,即推荐精度优于其它方法。结合多信息的概率矩阵分解模型,在数据稀疏情况下,也能保持较好的推荐性能,推荐精度得到一定程度提升。
关 键 词:
协同过滤
用户属性
物品关系
时序行为
PMF
点击此处可从《教育技术导刊》浏览原始摘要信息
点击此处可从《教育技术导刊》下载全文
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号