高观点下探寻多边形的内角和与外角和 |
| |
作者姓名: | 叶莹 |
| |
作者单位: | 广东省深圳市南山外国语学校(集团)科华学校 |
| |
摘 要: | <正>三角形的内角和是一个重要的几何量,在欧几里得几何学中,三角形的内角和为180度.在证明这一定理的时候,中学教科书[1]采用的方法是这样的:首先过三角形的某一个顶点作与对边平行的辅助线,再利用内错角相等得到三角形的内角和为180度.而内错角相等需要利用欧几里得几何的两条公理:同位角相等和对顶角相等.由此可见,为了证明三角形的内角和为180度,需要两条公理.中学课本证明完三角形的内角和为180度以后,再利用内角和外角互补的关系,
|
|
|