Investigation of toppling ball flight in American football with a mechanical field-goal kicker |
| |
Authors: | Chase M. Pfeifer Timothy J. Gay Jeff A. Hawks Shane M. Farritor Judith M. Burnfield |
| |
Affiliation: | 1.Institute for Rehabilitation Science and Engineering,Madonna Rehabilitation Hospital,Lincoln,USA;2.Physics & Astronomy,University of Nebraska,Lincoln,USA;3.Department of Mechanical and Materials Engineering,University of Nebraska-Lincoln,Lincoln,USA |
| |
Abstract: | A mechanical field-goal kicking machine was used to investigate toppling ball flight in American football place-kicking, eliminating a number of uncontrollable impact variables present with a human kicker. Ball flight trajectories were recorded using a triangulation-based projectile tracking system to account for the football’s 3-dimensional position during flight as well as initial launch conditions. The football flights were described using kinematic equations relating to projectile motion including stagnant air drag and were compared to measured trajectories as well as projectile motion equations that exclude stagnant air drag. Measured football flight range deviations from the non-drag equations of projectile motion corresponded to deficits between 9 and 31%, which is described by a football toppling compound drag coefficient of 0.007 ± 0.003 kg/m. Independent variables including impact location and impact angle orientation resulted in 15 impact conditions. We found that an impact location of 5.5 cm from the bottom of the ball maximized trajectory height and distance. At the 5.5-cm impact location, alterations in impact angle produced minimal change in football trajectory, including launch angle (range = 1.96 deg), launch speed (range = 1.06 m/s), and range (range = 0.94 m). |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|