首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进谱聚类算法的生物制药产业专利价值评估研究
引用本文:朱文韵,郭晴晴. 基于改进谱聚类算法的生物制药产业专利价值评估研究[J]. 科技管理研究, 2023, 0(20): 57-64
作者姓名:朱文韵  郭晴晴
作者单位:上海应用技术大学 经济与管理学院,上海应用技术大学 经济与管理学院
摘    要:有效评估药物专利价值有必要考虑制药基础技术细节以及新药专利保护期限较长的特殊性等有关实际,同时,利用机器学习方法开展专利价值评估的研究仍有待进一步完善,因此,针对生物制药产业专利价值评估准确性问题,结合产业技术因素及其专利特点,以及专利价值评估的共性指标和生物制药产业特征与专利技术特点的个性指标,引入自编码器(AE)模型和谱聚类算法(SC)构建专利价值评估算法模型,以药智专利通数据库的相关专利数据为样本进行实证分析,通过提取专利指标特征、专利聚类来进行专利价值评估,并运用支持向量机方法对专利价值进行分类,以验证AE-SC评估模型的有效性。结果表明:AE-SC评估模型通过自编码器提取专利特征后的专利价值聚类准确度优于谱聚类和传统K-means聚类;专利存在年数、药物专利类型、适应证类别等是评价生物制药产业专利价值必要考虑因素。

关 键 词:药物专利价值评估  技术因素  专利特点  自编码器  谱聚类  支持向量机  生物制药产业
收稿时间:2023-05-06
修稿时间:2023-11-25

Research on Patent Value Evaluation of Bio-pharmaceutical Industry Based on Improved Spectral Clustering Algorithm
Abstract:Aiming at the accuracy of patent value evaluation in bio-pharmaceutical industry, combining industrial technology factors and patent characteristics, the patent value evaluation index system and its industrial patent value evaluation model were constructed to reflect the characteristics of industry individuality. The auto encoder (AE) was used to reduce the dimension of the original patent information, and then the patent value evaluation model was established based on the spectral clustering algorithm (SC), and the support vector machine (SVM) was used to classify the patent information, so as to verify the validity of the model. The results show that the model can effectively reflect the level of patent value, and effectively verify that relevant information such as patent years, drug patent types and indications are necessary factors to consider in the evaluation of bio-pharmaceutical industry technology patents. This study provides a new perspective and method for the evaluation of industrial patent value.
Keywords:Bio-pharmaceutical Industry  Evaluation of Patent Values  Auto Encoder  Spectral Clustering  Support Vector Machine
点击此处可从《科技管理研究》浏览原始摘要信息
点击此处可从《科技管理研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号