首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度玻尔兹曼机的蛋白质O-糖基化位点的预测
摘    要:用深度学习(DL)的方法对蛋白质O-糖基化位点进行了预测。首先用SMOTE方法处理非平衡数据集,对较少一类的样本用"近亲繁殖"的方法产生新的样本,弥补"欠采样"或"过采样"造成的预测误差;然后用深度学习中的深度玻尔兹曼机神经网络(DBM)进行分类(预测),并用多数投票法对结果进行集成。实验结果表明,DBM是预测O-糖基化位点的行之有效的方法。

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号