首页 | 本学科首页   官方微博 | 高级检索  
     


Resolution limit for DNA barcodes in the Odijk regime
Authors:Wang Yanwei  Reinhart Wes F  Tree Douglas R  Dorfman Kevin D
Affiliation:1Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-ai Road, Suzhou 215123, People’s Republic of China;2Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
Abstract:We develop an approximation for the probability of optically resolving two fluorescent labels on the backbone of a DNA molecule confined in a nanochannel in the Odijk regime as a function of the fluorescence wavelength, channel size, and the properties of the DNA (persistence length and effective width). The theoretical predictions agree well with equivalent data produced by Monte Carlo simulations of a touching wormlike bead model of DNA in a high ionic strength buffer. Although the theory is only strictly valid in the limit where the effective width of the nanochannel is small compared with the persistence length of the DNA, simulations indicate that the theoretical predictions are reasonably accurate for channel widths up to two-thirds of the persistence length. Our results quantify the conjecture that DNA barcoding has kilobase pair resolution-provided the nanochannel lies in the Odijk regime.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号