巧用微分积分法求数列通项 |
| |
作者姓名: | 袁广夏 |
| |
作者单位: | 四川泸县五中 |
| |
摘 要: | 本文介绍一种求数列通项的方法——微分积分法。下面举两个例子。例1 已知f(x)是定义在自然数集上的函数,且f(1)=1,对任意的m,n∈N,有f(m+n)=f(n)+f(m)+mn。求f(n)。解:令m=1,则f(n+1)=f(n)+n+1。两边对(n+1)求导:f’(n+1)-f’(n)=1,故f’(n)是公差为1的等差数列,首项f’(1)。∴f’(n)=f’(1)+(n-1),两边对n积分,有f(n)=nf’(1)+1/2n~2-n+C。由条件f(1)=1得到f(2)=3。
|
本文献已被 CNKI 等数据库收录! |
|