摘 要: | 问题1如图,已知两定点A(-1,0),B(2,0),求使得∠PBA=2∠PAB的点P的轨迹方程.解设直线AP,BP的斜率分别是kAP,kBP,点P的坐标为(x,y),设∠PBA=β,∠PAB=α,因β=2α,则tanβ=tan2α,tanβ=12-tatannα2α.①∵kAP=x y1=tanα,kBP=x-y2=tan(π-β)=-tanβ,∴代入①有-x-y2=2yx 11-x y12②整理得3x2-y2=3,即为点P的轨迹方程.解答错了!错在哪里?评析上述解法有以下几处错误:(1)推导点P的轨迹方程时,只考虑了点P的x轴上方的情况,未对点P在x轴下方的情况进行分析.(2)由题设∠PBA=2∠PAB,从而有|PA|>|PB|,故轨迹在线段AB的垂直平分…
|