线性代数中的行列式和逆矩阵的多种解法 |
| |
作者姓名: | 郭卫平 |
| |
作者单位: | 秦皇岛教育学院 |
| |
摘 要: | 正确、熟练地进行运算是高等数学(二)线性代数部分的学习要求之一,为此,考生必须掌握运算的原理和方法。本文介绍行列式和逆矩阵的两种常规解法,例题来自历届自学考试试题。 一、求行列式的值 一般要求会计算4阶数字行列式或3阶有文字的行列式。 通常是先利用行列式的性质将其化简,再进行计算。 方法1:将行列式的一行(或一列)尽可能多的元素化为零,再对该行(或该列)展开。例1 计算n阶行列式的值: D= 解:依次对最后一列展开,得到 D=(-1) =…=(-1)=(-1) [注](-1)=(-1)=(-1)。例2求f(x)==0的根。…
|
本文献已被 CNKI 等数据库收录! |
|