摘 要: | 在高等代数课的教学中,常遇到形如AXB=C的矩阵等式,其中A、B、C为已知矩阵,X是待求的未知矩阵,我们称之为矩阵方程。在许多教学环节中,如求矩阵逆的问题、解线性方程组的问题、向量空间中的坐标变换问题和线性变换下的坐标问题等等,都需要求解矩阵方程。现行教材,对这些问题采取分开处理的方法,而且限于A、B可逆矩阵的情况,先求逆,再做乘法,解出X=A-~(-1)CB~(-1)。我们认为,这样处理有局限性,没有把不可逆矩阵包括进去,没能把解线方程组的问题和矩阵理论紧密联系起来,而且计算繁琐。实际上,在线性代数部分,矩阵理论是一条主线。在处理矩阵问题时,紧紧抓住矩阵的初等变换或初等矩阵这个有力工具,就能使离散的内容系统化,繁琐的问题简单化。我们在讲解逆矩阵一节时提出了矩阵方程这一概念,并给了用初等变换求解的方法。这样,既使得求逆矩阵的问题简便,又为以后的“向量空间”和“线性变换”两章的解题方法奠定了理论基础,而且与上一章“线性方程组”的内容相呼应。利用矩阵解线性方程组的方法,又拓广了矩阵方程的范围,对于系数矩阵A、B不可逆,甚至不是方阵的情形也有了满意的解法。以下三个方面详细论述。
|