首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Robust tuning of uncertainty and disturbance estimator-based control for stable processes with time delay
Institution:1. Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China;2. Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China;3. Northeast Electric Power Design Institute, Changchun 130021, China
Abstract:To expand the potential of uncertainty and disturbance estimator (UDE)-based control in practical application to most industrial stable processes, this paper proposes a convenient yet robust tuning rule according to the widely used first-order plus time delay (FOPTD) plant. The Smith predictor is first introduced to anticipate the delay-free output, which guarantees signal synchronizations in three control modules and enables remarkable restorations of nominal stability and performance. Then a second-order filter is employed in UDE to decouple the trade-off between disturbance rejection and noise attenuation. Based on this improvement and fixing both tracking speed and feedback gain to suggested patterns, the exhaustive evaluations for robustness against model distortion are executed through scanning the dimensionless filter bandwidth. The boundary demarcation triggered by the plunge of the continuous range of tolerable mismatched delays subsequently facilitates the formulation of an intuitive tuning rule with prescribed robustness. Its inherent model-based scaling property largely enables this rule to be implemented readily in industrial processes just like the proportional-integral-derivative (PID) controller. Several representative simulations are performed to demonstrate the merits of the proposed method over the related control strategies. And the promising prospect of the UDE-based control in the practical application is further illustrated by conducting a water level control experiment.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号