摘 要: | 1978年,B.M.Milisavljevic建立关于三角形边长a、b、c与外接圆半径R、内切圆半径r的一个几何不等式[1]Rr≥31∑ba+c.(1)Milisavljevic不等式形式优美,且加强了著名的Euler不等式[2]R≥2r,引起了不少人的兴趣.1996年,宋庆先生撰文[2]指出,Milisavljevic不等式强于不等式Rr≥43∑b+ac;(2)该文中,作者建立了一个较(2)式强但与Milisavljevic不等式不分强弱的不等式Rr≥98???∑b+a c???2.(3)本文统一加强上述不等式,并给出一个逆向不等式.定理设a、b、c为△ABC的三边长,s、R、r分别为三角形的半周长、外接圆半径、内切圆半径,则29???∑s?a…
|