二维柯西不等式的推广证明及简单应用 |
| |
作者单位: | ;1.甘肃省定西市第一中学 |
| |
摘 要: | <正>定理若a,b,c,d都是实数,则(a2+b2+b2)(c2)(c2+d2+d2)≥(ac+bd)2)≥(ac+bd)2,当且仅当ad=bc时,等号成立。一、二维柯西不等式的课本证明证明:(人教A版31页)(代数法)展开这个乘积,整理得(a2,当且仅当ad=bc时,等号成立。一、二维柯西不等式的课本证明证明:(人教A版31页)(代数法)展开这个乘积,整理得(a2+b2+b2)(c2)(c2+d2+d2)=a2)=a2c2c2+b2+b2 d2 d2+a2+a2 d2 d2+b2+b2c2c2。由于a2。由于a2c2c2+b2+b2 d2 d2+a2+a2 d2 d2
|
|
|