首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Micro- and nanofluidic technologies for epigenetic profiling
Authors:Toshiki Matsuoka  Byoung Choul Kim  Christopher Moraes  Minsub Han  Shuichi Takayama
Institution:1.Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA;2.Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, Michigan 48109, USA;3.School of Mechanical System Engineering, Incheon National University, Incheon 406-772, South Korea;4.Division of Nano-Bio and Chemical Engineering WCU Project, UNIST, Ulsan, South Korea
Abstract:This short review provides an overview of the impact micro- and nanotechnologies can make in studying epigenetic structures. The importance of mapping histone modifications on chromatin prompts us to highlight the complexities and challenges associated with histone mapping, as compared to DNA sequencing. First, the histone code comprised over 30 variations, compared to 4 nucleotides for DNA. Second, whereas DNA can be amplified using polymerase chain reaction, chromatin cannot be amplified, creating challenges in obtaining sufficient material for analysis. Third, while every person has only a single genome, there exist multiple epigenomes in cells of different types and origins. Finally, we summarize existing technologies for performing these types of analyses. Although there are still relatively few examples of micro- and nanofluidic technologies for chromatin analysis, the unique advantages of using such technologies to address inherent challenges in epigenetic studies, such as limited sample material, complex readouts, and the need for high-content screens, make this an area of significant growth and opportunity.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号