首页 | 本学科首页   官方微博 | 高级检索  
     


Multi-view enhanced zero-shot node classification
Affiliation:1. Department of Business and International Relations, Vistula University,Warsaw, Poland;2. European Humanities University, Vilnius, Lithuania;3. Vistula University, Stoklosy 3, 02-787 Warsaw, Poland;4. European Humanities University, Saviciaus 17, 01-127 Vilnius, Lithuania
Abstract:In recent years, Zero-shot Node Classification (ZNC), an emerging and more difficult task is starting to attract attention, where the classes of testing nodes are unobserved in the training stage. Existing studies for ZNC mainly utilize Graph Neural Networks (GNNs) to construct the feature subspace to align with the classes’ semantic subspace, thus enabling knowledge transfer from seen classes to unseen classes. However, the modeling of the node feature is single-view and unilateral, e.g., the bag-of-words vector, which is not enough to fully describe the characteristics of the node itself. To address this dilemma, we propose to develop the Multi-View Enhanced zero-shot node classification paradigm (MVE) to promote the machine’s generality to approach the human-like thinking mode. Specifically, multi-view features are obtained from different aspects such as pre-trained model embeddings, knowledge graphs, statistic methods, and then fused by a contrastive learning module into the compositional node representation. Meanwhile, a developed Graph Convolutional Network (GCN) is used to make the nodes fully absorb the information of neighbors while the over-smooth issue is alleviated by multi-view features and the proposed contrastive learning mechanism. Experimental results conducted on three public datasets show an average 25% improvement compared to baseline methods, proving the superiority of our multi-view learning framework. The code and data can be found at https://github.com/guaiqihen/MVE.
Keywords:Zero-shot node classification  Graph data analysis  Knowledge graph  Contrastive learning
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号