首页 | 本学科首页   官方微博 | 高级检索  
     


Isotopic constraints confirm the significant role of microbial nitrogen oxides emissions from the land and ocean environment
Authors:Wei Song  Xue-Yan Liu  Benjamin Z Houlton  Cong-Qiang Liu
Affiliation:School of Earth System Science, Tianjin University, Tianjin 300072, China;Department of Global Development and Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
Abstract:Nitrogen oxides (NOx, the sum of nitric oxide (NO) and N dioxide (NO2)) emissions and deposition have increased markedly over the past several decades, resulting in many adverse outcomes in both terrestrial and oceanic environments. However, because the microbial NOx emissions have been substantially underestimated on the land and unconstrained in the ocean, the global microbial NOx emissions and their importance relative to the known fossil-fuel NOx emissions remain unclear. Here we complied data on stable N isotopes of nitrate in atmospheric particulates over the land and ocean to ground-truth estimates of NOx emissions worldwide. By considering the N isotope effect of NOx transformations to particulate nitrate combined with dominant NOx emissions in the land (coal combustion, oil combustion, biomass burning and microbial N cycle) and ocean (oil combustion, microbial N cycle), we demonstrated that microbial NOx emissions account for 24 ± 4%, 58 ± 3% and 31 ± 12% in the land, ocean and global environment, respectively. Corresponding amounts of microbial NOx emissions in the land (13.6 ± 4.7 Tg N yr−1), ocean (8.8 ± 1.5 Tg N yr−1) and globe (22.5 ± 4.7 Tg N yr−1) are about 0.5, 1.4 and 0.6 times on average those of fossil-fuel NOx emissions in these sectors. Our findings provide empirical constraints on model predictions, revealing significant contributions of the microbial N cycle to regional NOx emissions into the atmospheric system, which is critical information for mitigating strategies, budgeting N deposition and evaluating the effects of atmospheric NOx loading on the world.
Keywords:nitrogen isotopes   nitrate   NOx emission   nitrogen deposition   microbial N cycle
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号