摘 要: | 某些不等式问题,若能巧妙的构造直线与圆,利用直线与圆的位置关系来解,可以优化解题过程,化难为易.1证明不等式例1对一切x、y∈R,求证:x2 y2 x2 (y-1)2 (x-1)2 y2 (x-1)2 (y-1)2≥22.分析将4个无理式转译成4个两点间的距离.证明对一切x、y∈R,原式左端看作点P(x,y)与定点O(0,0)、A(0,1)、B(1,0)、C(1,1)的距离之和,|PA| |PB|≥|AB|,|PO| |PC|≥|OC|于是|PA| |PB| |PO| |PC|≥|OC| |AB|=22,当且上仅面当的P无为理OC式与用A代B数的方交法点很时难取证得明等,号但.赋予其几何意义后,不等式证明得很轻松,体现出解析几何中数形结…
|