摘 要: | 许多命题若能灵活运用共轭复数的性质处理 ,可达到事半功倍的目的 ,使解题更加简捷 .1 活用基本性质知识要点 z=z; | z| =| z| ;z z=| z| 2 =| z| 2 ; z1 ±z2 =z1 ±z2 ;z1 · z2 =z2 · z2 ;z1 z2 =z1 z2.例 1 设复数 z1 和 z2 满足关系式 :z1 z2 Az1 A z2 =0 ,且 A≠ 0 ,A∈ C.证明 :(1) | z1 A|· | z2 A| =| A| 2 ;(2 ) z1 Az2 A=| z1 Az2 A| .(1987年全国高考题 )剖析 若用常规方法 ,即设 zj=xj yji(j=1,2 ) ,A=a bi(xj,yj,a,b∈R) ,然后转化为实数集上的问题求解 .然而因字母太多 ,运算太繁 .利用共…
|