Fan 型条件与泛连通性 |
| |
引用本文: | 林文松,顾国华,宋增民. Fan 型条件与泛连通性[J]. 东南大学学报, 2000, 16(1): 101-105 |
| |
作者姓名: | 林文松 顾国华 宋增民 |
| |
作者单位: | 东南大学应用数学系,南京,210096 |
| |
基金项目: | 国家自然科学基金,19471037, |
| |
摘 要: | 设G是n(≥5)个顶点的简单图.本文证明了若对G的任意一对距离为2的顶点u,v都有max{d(u),d(v)}≥(n+1)/2成立,则G中任一对顶点x和y之间存在长为6到n-1的路.,Let G be a simple graph with n(≥5) vertices. In this paper, we prove that if G is 3-connected and satisfies that d(u,v)=2 implies max {d(u),d(v)}≥(n+1) /2 for every pair of vertices u and v in G, then for any two vertices x, y of G, there are (x,y)-paths of length from 6 to n-1 in G, and there are (x,y)-paths of length from 5 to n-1 in G unless G[(N)(x)]=G[(N)(y)]≌K4or K5, or G[(N)(x)],G[(N)(y)]are complete and (N)(x)(n)(N)(y)=φ.
|
关 键 词: | 路 Fan型条件 泛连通 path Fan-type condition panconnectivity,路 Fan型条件 泛连通 path Fan-type condition panconnectivity |
Fan-Type Condition and Panconnectivity |
| |
Abstract: | |
| |
Keywords: | path Fan type condition panconnectivity |
本文献已被 CNKI 维普 等数据库收录! |
|