首页 | 本学科首页   官方微博 | 高级检索  
     


Differences in the utilisation of active power in squat and countermovement jumps
Authors:Damián Ferraro  Gabriel Fábrica
Affiliation:1. Departamento de Matemática y Estadística del Litoral, CENUR Litoral Norte, Universidad de la República, Salto, Uruguaydferraro@unorte.edu.uy;3. Unidad de Investigación en Biomecánica de la Locomoción Humana, Departamento de Biofísica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
Abstract:The aim of this article was to understand how active power is used in squat and countermovement jumps. A simple empirical model comprising a mass, a spring, an active element and a damper, together with an optimisation principle, was used to identify the mechanical factors that maximise performance of jumps without countermovement (squat jumps, SJ) and with countermovement (CMJ). Twelve amateur volleyball players performed SJ from two initial positions and CMJ with two degrees of counterbalancing, while kinematic data were collected (jump height, push-off duration and position of the centre of mass). The model adjusted well to real data of SJ through all the impulse phase, and slightly less adequately at the end of this phase for CMJ. Nevertheless, it provides a satisfactory explanation for the generation and utilisation of active power for both type of jumps. On average, the estimated power of the active elements, the spring, and the damper were greater in the SJ. Based upon the result obtained with this model, we suggest that active power is best evaluated with SJ. The reason for this is that, during this kind of jump, the elements associated with the damper consume much of the energy produced by the active elements. The participation of the elements that consume the energy generated by the active elements is less in CMJ than in SJ, allowing for a better utilisation of this energy. In this way it is possible to achieve a better performance in CMJ with less active power.
Keywords:Biomechanics  modelling  exercise  performance
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号