首页 | 本学科首页   官方微博 | 高级检索  
     


Field measurement of gas permeability of compacted loess used as an earthen final cover for a municipal solid waste landfill
Authors:Liang-tong Zhan  Qing-wen Qiu  Wen-jie Xu  Yun-min Chen
Affiliation:1.MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering,Zhejiang University,Hangzhou,China
Abstract:The use of loess as an earthen final cover material is promising in northwest China which has an arid and semi-arid climate. A full-scale testing facility with an area 30 m long by 20 m wide was constructed at the Xi’an landfill of municipal solid wastes to investigate the performance of an inclined capillary barrier cover. The cover consisted of a compacted loess layer underlain by a gravel layer. The testing facility was well instrumented for a gas permeation test and recording of the soil conditions in terms of volumetric water content, pore gas pressure, and soil temperature. Tests were performed to measure the gas permeability of the compacted loess before and after the planting of vegetation on the cover. The field measurements demonstrate that the capillary break at the fine/coarse soil interface allows the upper compacted loess layer to retain more water, and conversely reduces its gas permeability, which is favorable for reducing landfill gas emissions. When the degree of saturation of the compacted loess was greater than 85%, the gas permeability decreased significantly with a further increment in volumetric water content. The growth of vegetation roots tended to fill the large pores in the upper loosely-compacted loess, resulting in a decrease in gas permeability of one order of magnitude. The influence of soil clods in the compacted loess on gas permeability can be one to two orders of magnitude due to an increase in pore size and a decrease in tortuosity.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号