首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
分析了两轮自平衡车的总体原理及数学模型,针对单个传感器在两轮平衡车姿态检测中存在的干扰和漂移误差问题,采用互补滤波算法对加速度计和陀螺仪输出的数据进行融合演算,对噪声干扰进行了良好的抑制,提高了输出姿态角的准确性。针对两轮平衡车自平衡控制问题,采用比例、积分、微分控制器,使平衡车的平衡系统得到良好的直立平衡控制。仿真数据和实验结果表明,该方法解决了单个传感器对姿态角测量误差大的问题,达到要求的控制性能。  相似文献   

2.
根据陀螺仪和加速计两类惯性传感器在姿态角度检测中的优缺点,提出了将多传感器数据加权和卡尔曼滤波相结合的两轮自平衡车姿态角度检测数据融合算法.首先对传感器输出进行分组加权运算,然后采用卡尔曼滤波算法对加权计算结果进行估计.实验结果表明,该检测方法可行有效,相对单一传感器测量,可提升姿态角度检测精度.  相似文献   

3.
为探究两轮自平衡车系统中惯性传感器的数据误差问题和车体平衡抗扰适应性,利用主控制器KL25、惯性传感器MPU6050等器件搭建了实验平台。基于四元数与互补滤波数据的融合解算车体姿态,通过数字PID算法调整PWM信号量的输出实现姿态的自我调整,最终实现对两轮车体系统的自平衡控制。测试结果表明,在小幅度偏角范围内车体能够及时调整姿态,表现出了良好自平衡性能。  相似文献   

4.
提出了一种两轮平衡车的设计方案:采用陀螺仪MPU6050实时检测小车的运动姿态,核心控制板Arduino Uno根据从传感器中获得的数据,经过PID算法处理之后,输出相应的控制信号到电动机驱动电路,实现对小车电机的平衡控制.该平衡车可以通过蓝牙来进行控制,能够进行灵活的转向和前进动作,并能在运动中实现自主平衡,在外界有适度干扰的情况下能够自行调整并迅速恢复平衡状态.以该车为研究基础,可以搭载各种传感器,应用于复杂环境的勘探场合.  相似文献   

5.
研究了无动量轮双模式前后纵向两轮平衡车的关键技术。针对陀螺仪采集的数据进行滑动滤波与互补滤波,优化得到姿态信息;不采用动量轮,设计程序对舵机和电机进行精确控制,以实现平衡车的动态平衡。实验结果表明,该纵向两轮平衡车姿态解算信息准确,控制决策可行,降低了舵机和电机的耦合关系的影响,在多种路面环境下电磁自主循迹与蓝牙遥控两种模式均可满足自平衡的需求。  相似文献   

6.
针对小车控制系统的复杂性,设计一个以STM32F103C8T6微处理器为主控制器,以MPU-6050传感器为姿态检测部件的自平衡小车系统。由于陀螺仪和加速度计在测量时存在噪声干扰和随机漂移误差,采用卡尔曼滤波算法对陀螺仪和加速度计数据进行融合,补偿传感器测量误差,计算出小车倾角与角速度的最优估计值。并以最优姿态角和小车速度为反馈量构成双闭环控制,利用PID控制算法实现小车系统的自平衡控制。通过系统的软硬件设计、调试及运行情况,证明自平衡小车能够稳定地实现自平衡控制。  相似文献   

7.
针对双轮竞速自平衡小车运动时的姿态倾角存在误差、平衡性不够好的问题,采用视觉传感器、卡尔曼滤波、高性能DSP、Wi-Fi通信等多种物联网技术,设计出一款基于视觉的双轮竞速自平衡小车。详细阐述了该小车的工作原理、系统架构、硬件设计及PID、卡尔曼滤波算法。实践表明,基于视觉的双轮竞速自平衡小车具有姿态倾角精准、运动平稳、转弯半径小——可达零转弯半径、前进后退切换自如等优点。  相似文献   

8.
设计了一种四旋翼飞行器的实验系统。电机调速器运用检测反电动势的方法控制三相全桥逆变电路从而调节无刷直流电机的转速。以ARM处理器为主控制器对电机调速器进行控制,从而实现飞行器的平衡和姿态控制。通过四旋翼工作模式的研究,利用加速度传感器和陀螺仪数据进行控制算法设计与研究,实现四旋翼飞行器姿态的控制调节。开发了仿真调试软件系统实时监测传感器的数据和控制量。实验表明,通过合适的控制算法可以四旋翼飞行器的平衡性能和各种飞行姿态,从而为学生提供了新的仿真和实践平台,有利于创新型实验教学任务的顺利开展。  相似文献   

9.
为降低老人跌倒的伤残率和死亡率,通过可穿戴式装置采集运动数据,结合阈值法与模式识别算法的优点提出一种基于姿态融合的联立判别跌倒检测算法,并引入云技术与微信小程序设计一种便捷可行的跌倒检测系统.该系统首先通过互补滤波对原始数据进行预处理,解决因陀螺仪低频特性差和加速度计高频特性差导致解算姿态不准确的问题,然后通过阈值法对...  相似文献   

10.
介绍了多功能自平衡智能车控制平台的设计与实现。通过对系统需求的分析,完成了平衡车所需的主控部分、传感器部分硬件电路的设计,搭建了以PIC32MZ为核心的具有多功能的自平衡车。本设计完成的智能车具有以下特点:基于MPU9150传感器实现自平衡功能;具有GPS定位显示;控制系统具有较强的鲁棒性,在受到20°以内干扰时仍能回复到直立运行状态;具有良好的速度和方向闭环控制,同时兼具速度、角度、低电压等多种保护;具有良好的人机界面,可存储多组控制参数;智能车带有SD卡,可以文件系统形式读取和存储信息。经过该自平衡车的设计流程,可以进行电子电路设计、嵌入式系统硬件设计、嵌入式系统软件设计、控制理论验证等等一系列实验探索。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号