首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Detailed time-series of the resultant joint moments and segmental interactions during soccer instep kicking were compared between the preferred and non-preferred kicking leg. The kicking motions of both legs were captured for five highly skilled players using a three-dimensional cinematographic technique at 200 Hz. The resultant joint moment (muscle moment) and moment due to segmental interactions (interaction moment) were computed using a two-link kinetic chain model composed of the thigh and lower leg (including shank and foot). The mechanical functioning of the muscle and interaction moments during kicking were clearly illustrated. Significantly greater ball velocity (32.1 vs. 27.1 m · s?1), shank angular velocity (39.4 vs. 31.8 rad · s?1) and final foot velocity (22.7 vs. 19.6 m · s?1) were observed for the preferred leg. The preferred leg showed a significantly greater knee muscle moment (129.9 N · m) than the non-preferred leg (93.5 N · m), while no substantial differences were found for the interaction moment between the two legs (79.3 vs. 55.7 N · m). These results indicate that the highly skilled soccer players achieved a well-coordinated inter-segmental motion for both the preferred and non-preferred leg. The faster leg swing observed for the preferred leg was most likely the result of the larger muscle moment.  相似文献   

2.
The aims of this study were to examine the release speed of the ball in maximal instep kicking with the preferred and the non-preferred leg and to relate ball speed to biomechanical differences observed during the kicking action. Seven skilled soccer players performed maximal speed place kicks with the preferred and the non-preferred leg; their movements were filmed at 400 Hz. The inter-segmental kinematics and kinetics were derived. A coefficient of restitution between the foot and the ball was calculated and rate of force development in the hip flexors and the knee extensors was measured using a Kin-Com dynamometer. Higher ball speeds were achieved with the preferred leg as a result of the higher foot speed and coefficient of restitution at the time of impact compared with the non-preferred leg. These higher foot speeds were caused by a greater amount of work on the shank originating from the angular velocity of the thigh. No differences were found in muscle moments or rate of force development. We conclude that the difference in maximal ball speed between the preferred and the non-preferred leg is caused by a better inter-segmental motion pattern and a transfer of velocity from the foot to the ball when kicking with the preferred leg.  相似文献   

3.
The aims of this study were to examine the release speed of the ball in maximal instep kicking with the preferred and the non-preferred leg and to relate ball speed to biomechanical differences observed during the kicking action. Seven skilled soccer players performed maximal speed place kicks with the preferred and the nonpreferred leg; their movements were filmed at 400 Hz. The inter-segmental kinematics and kinetics were derived. A coefficient of restitution between the foot and the ball was calculated and rate of force development in the hip flexors and the knee extensors was measured using a Kin-Com dynamometer. Higher ball speeds were achieved with the preferred leg as a result of the higher foot speed and coefficient of restitution at the time of impact compared with the non-preferred leg. These higher foot speeds were caused by a greater amount of work on the shank originating from the angular velocity of the thigh. No differences were found in muscle moments or rate of force development. We conclude that the difference in maximal ball speed between the preferred and the non-preferred leg is caused by a better inter-segmental motion pattern and a transfer of velocity from the foot to the ball when kicking with the preferred leg.  相似文献   

4.
During a soccer match, players are often required to control the ball velocity of a kick. However, little information is available for the fundamental qualities associated with kicking at various effort levels. We aimed to illustrate segmental dynamics of the kicking leg during soccer instep kicking at submaximal efforts. The instep kicking motion of eight experienced university soccer players (height: 172.4 ± 4.6 cm, mass: 63.3 ± 5.2 kg) at 50, 75 and 100% effort levels were recorded by a motion capture system (500 Hz), while resultant ball velocities were monitored using a pair of photocells. Between the three effort levels, kinetic adjustments were clearly identified in both proximal and distal segments with significantly different (large effect sizes) angular impulses due to resultant joint and interaction moments. Also, players tended to hit an off-centre point on the ball using a more medial contact point on the foot and with the foot in a less upright position in lower effort levels. These results suggested that players control their leg swing in a context of a proximal to distal segmental sequential system and add some fine-tuning of the resultant ball velocity by changing the manner of ball impact.  相似文献   

5.
足球运动中踢球脚有优势脚与非优势脚之分,优势脚踢球主要表现为踢球力量大、出球准确,而非优势脚则与之相反。两者摆动腿摆动特征具有相似性,但运用生物力学手段对其研究发现,优势脚与非优势脚摆动腿的摆动特征存在很多差异性,主要表现在非优势脚摆动腿的蹬地不充分、股后肌群力量较弱、小腿屈曲不充分、小腿前摆时间过早、膝关节制动太早以及小腿前摆不充分等一系列差异上。因此,平时应该加强非优势脚训练,以形成正确动力定型。  相似文献   

6.
Kinematic comparison of the preferred and non-preferred foot punt kick   总被引:1,自引:1,他引:0  
Kicking with the non-preferred leg is important in Australian Football and becoming important in the rugby codes. The aim of this study was to examine differences between preferred and non-preferred leg kicking in the drop punt kick. Seventeen elite Australian Football players performed kicks with the preferred and non-preferred leg. Optotrak Certus collected kinematic data of the kick leg and pelvis (200 Hz) from kick leg toe-off until ball contact. Foot speed, knee and shank angular velocity at ball contact, and pelvis range of motion were significantly larger for the preferred leg (P < 0.05). In contrast, hip and thigh angular velocity at ball contact and hip range of motion were significantly larger for the non-preferred leg. This indicates different movement patterns, with preferred-leg kicks making greater use of the pelvis, knee, and shank while non-preferred leg kicks rely relatively more on the hip and thigh (P < 0.05). Reasons for this difference might be due to locking degrees of freedom or sub-optimal sequencing in the non-preferred leg. The thigh-knee continuum identified by Ball ( 2008 ) was also evident in this study. Findings have implications for training non-preferred leg kicking for performance and injury prevention.  相似文献   

7.
The purpose of this study was to determine whether joint velocities and segmental angular velocities are significantly correlated with ball velocity during an instep soccer kick. We developed a deterministic model that related ball velocity to kicking leg and pelvis motion from the initiation of downswing until impact. Three-dimensional videography was used to collect data from 16 experienced male soccer players (age = 24.8 ± 5.5 years; height = 1.80 ± 0.07 m; mass = 76.73 ± 8.31 kg) while kicking a stationary soccer ball into a goal 12 m away with their right foot with maximal effort. We found that impact velocities of the foot center of mass (CM), the impact velocity of the foot CM relative to the knee, peak velocity of the knee relative to the hip, and the peak angular thigh velocity were significantly correlated with ball velocity. These data suggest that linear and angular velocities at and prior to impact are critical to developing high ball velocity. Since events prior to impact are critical for kick success, coordination and summation of speeds throughout the kicking motion are important factors. Segmental coordination that occurs during a maximal effort kick is critical for completing a successful kick.  相似文献   

8.
The purpose of this paper was to establish postural cues in kicking that may be of use to goalkeepers. Eight male soccer players (age 20.5 +/- 1.1 yrs; height 1.78 +/- 0.053 m; mass 75.18 +/- 9.66 kg) performed three types of kick: a low side-foot kick to the left hand corner of the goal, a low side-foot kick straight ahead, and a low instep kick straight ahead. Kicks were recorded by an optoelectronic motion analysis system at 240 Hz. At kicking foot take-off (about 200 ms before ball contact) the variables which were significantly different and could act as cues were support foot progression angle, pelvis rotation, and kicking hip and ankle flexion. The support foot progression angle was considered to be the most valuable of these variables as its angle coincided with the direction of ball projection. The other variables were less clear in their interpretation and so less valuable for a goalkeeper to use for decision making. Cues appearing after support foot contact were thought unlikely to be of value to a goalkeeper in their decision making. These include kicking leg knee flexion angle, and support leg shank and thigh angles.  相似文献   

9.
Abstract

We aimed to illustrate support leg dynamics during instep kicking to evaluate the role of the support leg action in performance. Twelve male soccer players performed maximal instep kicks. Their motions and ground reaction forces were recorded by a motion capture system and a force platform. Moments and angular velocities of the support leg and pelvis were computed using inverse dynamics. In most joints of the support leg, the moments were not associated with or counteracting the joint motions except for the knee joint. It can be interpreted that the initial knee flexion motion counteracting the extension joint moment has a role to attenuate the shock of landing and the following knee extension motion associated with the extension joint moment indirectly contributes to accelerate the swing of kicking leg. Also, appreciable horizontal rotation of the pelvis coincided with increase of the interaction moment due to the hip joint reaction force on the support leg side. It can be assumed that the interaction moment was the main factor causing the pelvis counter-clockwise rotation within the horizontal plane from the overhead view that precedes a proximal-to-distal sequence of segmental action of the swing leg.  相似文献   

10.
The purpose of this paper was to establish postural cues in kicking that may be of use to goalkeepers. Eight male soccer players (age 20.5 ± 1.1 yrs; height 1.78 ± 0.053 m; mass 75.18 ± 9.66 kg) performed three types of kick: a low side-foot kick to the left hand corner of the goal, a low side-foot kick straight ahead, and a low instep kick straight ahead. Kicks were recorded by an optoelectronic motion analysis system at 240 Hz. At kicking foot take-off (about 200 ms before ball contact) the variables which were significantly different and could act as cues were support foot progression angle, pelvis rotation, and kicking hip and ankle flexion. The support foot progression angle was considered to be the most valuable of these variables as its angle coincided with the direction of ball projection. The other variables were less clear in their interpretation and so less valuable for a goalkeeper to use for decision making. Cues appearing after support foot contact were thought unlikely to be of value to a goalkeeper in their decision making. These include kicking leg knee flexion angle, and support leg shank and thigh angles.  相似文献   

11.
The aim of this study was to examine the effect of leg muscle fatigue on the kinetics and kinematics of the instep football kick. Fatigue was induced by repeated, loaded knee extension (40% body weight) and flexion (50% body weight) motions on a weight-training machine until exhaustion. The kicking motions of seven male players were captured three-dimensionally at 500 Hz before and immediately after the fatigue protocol. The significantly slower ball velocity observed in the fatigue condition was due to both reduced lower leg swing speed and poorer ball contact. The reduced leg swing speed, represented by a slower toe linear velocity immediately before ball impact and slower peak lower leg angular velocity, was most likely due to a significantly reduced resultant joint moment and motion-dependent interactive moment during kicking. These results suggest that the specific muscle fatigue induced in the present study not only diminished the ability to generate force, but also disturbed the effective action of the interactive moment leading to poorer inter-segmental coordination during kicking. Moreover, fatigue obscured the eccentric action of the knee flexors immediately before ball impact. This might increase the susceptibility to injury.  相似文献   

12.
This study examined the relationship between leg preference and knee mechanics in females during sidestepping. Three-dimensional data were recorded on 16 female collegiate footballers during a planned 45° sidestep manoeuvre with their preferred and non-preferred kicking leg. Knee kinematics and kinetics during initial contact, weight acceptance, peak push-off, and final push-off phases of sidestepping were analysed in both legs. The preferred leg showed trivial to small increases (ES = 0.19–0.36) in knee flexion angle at initial contact, weight acceptance, and peak push-off, and small increases (ES = 0.21–0.34) in peak power production and peak knee extension velocity. The non-preferred leg showed a trivial increase (ES = 0.10) in knee abduction angle during weight acceptance; small to moderate increases (ES = 0.22–0.64) in knee internal rotation angle at weight acceptance, peak push-off, and final push-off; a small increase (ES = 0.22) in knee abductor moment; and trivial increases (ES = 0.09–0.14) in peak power absorption and peak knee flexion velocity. The results of this study show that differences do exist between the preferred and non-preferred leg in females. The findings of this study will increase the knowledge base of anterior cruciate ligament injury in females and can aid in the design of more appropriate neuromuscular, plyometric, and strength training protocols for injury prevention.  相似文献   

13.
Footedness in world soccer: an analysis of France '98.   总被引:1,自引:1,他引:0  
Most football players and coaches agree that players are capable of learning to use both feet with equal frequency and efficiency--that is, become 'two-footed'. There is also some consensus that two-footed play is associated with skill in individual players. If these assumptions are true, then the world's elite football players should be substantially less 'one-footed' than the rest of the population. To examine this issue, we quantified the pattern of foot use in a sample of 236 players from 16 teams in the 1998 World Cup (France '98). Our findings indicate that World Cup players are as right-footed as the general population (approximately 79%). The remaining players were largely left-footed and as biased towards the use of their preferred foot as their right-footed counterparts. Very few players used each foot with equal frequency. Remarkably, both left- and right-footed players were as skilled, on average, with their non-preferred foot as they were with their preferred foot, on the rare occasions when they used it. Therefore, it is unlikely that infrequent use of one foot compared to the other foot can be accounted for by skill differences between the feet. Players were most asymmetrical for set pieces; nevertheless, first touches, passes, dribbles and tackles were rarely performed with the non-preferred foot as well. Our results support a biological model of foot preference and performance, as well as demonstrating the usefulness of soccer for studies of lateral asymmetries.  相似文献   

14.
Most football players and coaches agree that players are capable of learning to use both feet with equal frequency and efficiency – that is, become 'two-footed'. There is also some consensus that two-footed play is associated with skill in individual players. If these assumptions are true, then the world's elite football players should be substantially less 'one-footed' than the rest of the population. To examine this issue, we quantified the pattern of foot use in a sample of 236 players from 16 teams in the 1998 World Cup (France '98). Our findings indicate that World Cup players are as right-footed as the general population (~79%). The remaining players were largely leftfooted and as biased towards the use of their preferred foot as their right-footed counterparts. Very few players used each foot with equal frequency. Remarkably, both left- and right-footed players were as skilled, on average, with their non-preferred foot as they were with their preferred foot, on the rare occasions when they used it. Therefore, it is unlikely that infrequent use of one foot compared to the other foot can be accounted for by skill differences between the feet. Players were most asymmetrical for set pieces; nevertheless, first touches, passes, dribbles and tackles were rarely performed with the non-preferred foot as well. Our results support a biological model of foot preference and performance, as well as demonstrating the usefulness of soccer for studies of lateral asymmetries.  相似文献   

15.

Fast unloaded movements (i.e. striking, throwing and kicking) are typically performed in a proximo‐distal sequence, where initially high proximal segments accelerate while distal segments lag behind, after which proximal segments decelerate while distal segments accelerate. The aims of this study were to examine whether proximal segment deceleration is performed actively by antagonist muscles or is a passive consequence of distal segment movement, and whether distal segment acceleration is enhanced by proximal segment deceleration. Seventeen skilled taekwon‐do practitioners were filmed using a high‐speed camera while performing a high front kick. During kicking, EMG recordings were obtained from five major lower extremity muscles. Based on the kinematic data, inverse dynamics computations were performed yielding muscle moments and motion‐dependent moments. The results indicated that thigh deceleration was caused by motion‐dependent moments arising from lower leg motion and not by active deceleration. This was supported by the EMG recordings. Lower leg acceleration was caused partly by a knee extensor muscle moment and partly by a motion‐dependent moment arising from thigh angular velocity. Thus, lower leg acceleration was not enhanced by thigh deceleration. On the contrary, thigh deceleration, although not desirable, is unavoidable because of lower leg acceleration.  相似文献   

16.
Six competitive soccer players were recruited to examine EMG activation in three quadriceps muscles during a kicking accuracy task. Participants performed three maximum instep place kicks of a stationary ball, 11 m perpendicular from the centre of the goal line towards targets (0.75 m(2)) in the four corners of the goal. Surface EMG of the vastus lateralis, vastus medialis, and rectus femoris of the kicking leg was normalized and averaged across all participants to compare between muscles, targets, and the phase of the kick. Although no significant difference were observed between muscles or kick phases, kicks to the right targets produced significantly greater muscle activity than those towards the left targets (P < 0.01). In addition, kicks towards the top right target demonstrated significantly greater muscle activity than towards the top and bottom left (P < 0.01). Under accurate soccer shooting conditions, kicks aimed to the top right corner of the goal demonstrated a higher level of quadriceps muscle activation than those towards the other corners.  相似文献   

17.
Soccer kicking training should be adjusted to the characteristics of the athletes. Therefore, examination of differences in kicking kinematics of females and pubertal players relative to males is worthwhile. The purpose of the study was to compare kicking kinematics and segmental sequence parameters between male, female, and pubertal players. Ten adult male, ten adult female, and ten male pubertal players participated in the study. Participants performed five consecutive kicking trials of a stationary ball, as powerful as they could. Analysis of variance showed significantly higher ball velocity, higher joint linear velocities for the knee and the hip, and higher angular velocities of the knee and the ankle for males compared to female and pubertal players (p < 0.05). Similarly, the peak joint velocity was achieved significantly closer to ball impact in males compared to other groups (p < 0.05). Males also showed a more plantarflexed ankle immediately before ball impact (p < 0.05). Females and pubertal players may benefit from skill training aiming to increase ankle plantarflexion and hip flexion prior to ball impact, and to adjust thigh and shank motion, such that the shank–foot segment travels through a higher range of motion and with a greater velocity.  相似文献   

18.
The aim of this study was to identify critical kinetic variables that lead to increased ball velocity during a side-foot passing kick in soccer. Seven experienced male soccer players and eight inexperienced players participated in the experiment. They were instructed to perform side-foot kicks along the ground with maximum effort with an eye on the target line. The joint angles, angular velocities, and torques of the kicking leg were determined based on the three-dimensional kinematic data. The mean ball speed of the experienced group (21.4 +/- 1.5 m/s) was significantly faster than that of the inexperienced group (16.0 +/- 1.0m/s; P < 0.001). The motions of the inexperienced players tended to be less dynamic than those of the experienced players. The most noticeable difference in the kinetics of the kick was found in the hip flexion torque throughout the back-swing phase until the leg-cocking phase. The mean peak value of the experienced group (168 +/- 20 N x or m) was significantly greater than that of the inexperienced group (94 +/- 17 N x or m; P < 0.001). To increase ball speed during a side-foot passing kick, the generation of hip-flexion torque during the earlier stage of kicking is critical.  相似文献   

19.
踢球是决定比赛胜负的主要技术手段之一.其中,脚背内侧踢球、正脚背踢球、脚内侧踢球及脚背外侧踢球是4种最基本的踢球方法.4种踢球方法踢球腿的摆动具有相似性,运动生物力学手段对其进行研究比较发现,脚背内踢球摆动腿的大腿前摆角最大,脚内侧踢球小腿前摆角最小,脚触球时,正脚背踢球与脚背外侧踢球的小腿角速度最快,脚内侧最慢.摆动腿的摆动存在鞭打动作,但不仅仅局限于鞭打动作.  相似文献   

20.
ABSTRACT

A possible link between soccer-specific injuries, such as groin pain and the action of hip adductor muscles has been suggested. This study aimed to investigate neuromuscular activation of the adductor magnus (AM) and longus (AL) muscles during instep and side-foot soccer kicks. Eight university soccer players performed the two types of kick at 50%, 75% and 100% of the maximal ball speed. Surface electromyography (EMG) was recorded from the AM, AL, vastus lateralis (VL) and biceps femoris (BF) muscles of both kicking and supporting legs and the kicking motions were three-dimensionally captured. In the kicking leg, an increase in surface EMG with an increase in ball speed during instep kicking was noted in the AM muscle (p < 0.016), but not in AL, VL or BF muscles (p > 0.016). In the supporting leg, surface EMG of both AM and AL muscles was significantly increased with an increase in the ball speed before ball impact during both instep and side-foot kicks (p < 0.016). These results suggest that hip adductor muscles markedly contribute to either the kicking or supporting leg to emphasise the action of soccer kicks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号