首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
分析了国际上和中国赛艇队对功率评价与赛艇水陆训练强度控制问题的有关研究,对于如何把赛艇陆上测试的功与功率与水上的运动强度统一起来,如何运用功和功率在水陆训练整体评价运动员体能的方法进行了分析;对如何建立起赛艇水陆训练强度测评统一、完整的国家标准和体系进行了探讨。通过水上测试与陆上测功仪的功率数据的合理对应,能准确发现各种技能的细节问题,结合生化指标测试,就可能迅速建立起赛艇水陆训练强度测评统一、完整、先进的国家标准和体系,对2008年奥运会中国体能项目的全面突破和“119工程”的完成有实质的意义。  相似文献   

2.
In rowing, mechanical power output is a key parameter for biophysical analyses and performance monitoring and should therefore be measured accurately. It is common practice to estimate on-water power output as the time average of the dot product of the moment of the handle force relative to the oar pin and the oar angular velocity. In a theoretical analysis we have recently shown that this measure differs from the true power output by an amount that equals the mean of the rower’s mass multiplied by the rower’s center of mass acceleration and the velocity of the boat. In this study we investigated the difference between a rower’s power output calculated using the common proxy and the true power output under different rowing conditions. Nine rowers participated in an on-water experiment consisting of 7 trials in a single scull. Stroke rate, technique and forces applied to the oar were varied. On average, rowers’ power output was underestimated with 12.3% when determined using the common proxy. Variations between rowers and rowing conditions were small (SD = 1.1%) and mostly due to differences in stroke rate. To analyze and monitor rowing performance accurately, a correction of the determination of rowers’ on-water power output is therefore required.  相似文献   

3.
Abstract

Rowers sit on a seat that slides relative to the boat/ergometer. If a rower lifts him or herself from this sliding seat at any time, the seat will move away from under them and the rowing action is disrupted. From a mechanical perspective, it is clear that the need for the rower to remain in contact with the sliding seat at all times imposes position-dependent constraints on the forces exerted at the oar handle and the footstretcher. Here we investigate if the mechanical power output during rowing, which is strongly related to these forces, might be improved if the contact with the sliding seat was of no concern to the rower. In particular, we examine if elimination of these constraints by strapping the rower to the sliding seat leads to an increase in performance during the start on a standard rowing ergometer. Eleven well-trained female rowers performed 5-stroke starts in normal and strapped conditions. Handle force, vertical seat force, footstretcher force, and handle kinematics were recorded, from which mechanical power and work output were calculated. Most of the relevant mechanical variables differed significantly between the normal and strapped conditions. Most importantly, mechanical power output (averaged over the 5-stroke start) in the strapped condition was 12% higher than in the normal condition. We conclude that strapping a rower's pelvis to the sliding seat allows more vigorous execution of the stroke phases, resulting in a substantial improvement in performance during the start of ergometer rowing.  相似文献   

4.
Oar force and oar angle data resulting from a 6‐min maximal rowing ergometer test undertaken by novice (n = 9), good (n ‐ 23) and national (n = 9) level male rowers, were used to identify biomechanical performance variables which accurately discriminated between rowers of differing ability levels. The variables included two work capacity measures, mean propulsive power output per kilogram of body mass (W kg‐1) and propulsive work consistency (%), and two skill variables, stroke‐to‐stroke consistency (%) and stroke smoothness (%). Discriminant function analysis indicated the presence of two functions, both of which clearly indicated the importance of mean propulsive power output per kilogram of body mass as a discriminating variable. Function 2 gave greater weight to stroke‐to‐stroke consistency and stroke smoothness than function 1; however, function 1 was the most powerful discriminator. Classification procedures were used to predict the ability level to which a rower most likely belonged and involved defining the ‘distance’ between each rower and each ability level centroid, with the rower being classified into the ‘nearest’ ability level. These procedures indicated that 100% of the elite, 73.9% of the good, 88.9% of the novice and 82.9% of all rowers were correctly classified into their respective skill levels. Stepwise discriminant analysis included the variables in the following order: mean propulsive power output per kilogram of body mass, stroke‐to‐stroke consistency, stroke smoothness and propulsive work consistency (P < 0.001). The results of this study indicate that biomechanical performance variables related to rowing capacity and skill may be identified and used to discriminate accurately between rowers of differing skill levels, and that, of these variables, propulsive work consistency is the least effective discriminator.  相似文献   

5.
Rowing     
The purpose of this study was to compare rowing technique on the dynamic RowPerfect ergometer with a single scull. Eight national‐level rowers performed on both the RowPerfect ergometer and in a single scull over 500 m, at rates of 24, 26, and 28 strokes/minute. Blade force and oar angle (on‐water) and handle force and stroke length (on the ergometer) were measured. Both force and stroke angle/length were normalised from 0 to 100 (where 100 was the peak value). Body positions of the subjects at both the catch and finish of each of these rowing strokes were also compared for each stroke rate. The coefficient of multiple determination (CMD) was used to measure the consistency of force curves over a sample of five sequential strokes for each rower. Cross‐correlations were performed between the left‐ and right‐ side on‐water sculling force curves and a mean of these values with the ergometer curve for each rower. Stroke angle/length, which did not vary with rate, was similar for both forms of rowing. The CMDs showed a high consistency across the normalised strokes of each subject (≈0.98). Cross‐correlation values of 0.91, 0.92, and 0.93 were recorded between the force curves from the ergometer and on‐water trials for stroke rates of 24, 26, and 28 strokes/minute, respectively. The mean trunk, thigh and lower leg angles at the catch and finish of the stroke were also similar across the stroke rates as determined by t‐tests. Results indicate that technique used on the RowPerfect ergometer was similar to that for on‐water sculling, thus validating its use in off‐water training.  相似文献   

6.
In order to quantify internal forces and articular moments, by the inverse dynamics method, specially at lumbar level, an experimental laboratory apparatus to analyze kinematics and 3D kinetics of rowers was developed. It comprised a 3D motion analysis system, a Type C Concept II ergometer, three force-plates, six axes and two miniature mono-dimensional force transducers. The apparatus was designed for each hand, with two miniature transducers integrated into new steel handles to measure the force developed by each hand. Furthermore, the apparatus was also designed for each foot. Two force platforms were placed under two new foot stretchers to measure force and moment developed by each foot. The ergometer also has a sliding seat under which was placed a miniature force platform. A study of the rowing movement of a regional level competition rower demonstrated the relevance of the data. This study was concerned with the 3D kinetics parameters expressed in the medio-lateral, anterio-posterior and vertical axes. Some obtained data are novel or rarely associated together and enable a better understanding of the rower movement.  相似文献   

7.
The purpose of this study was to compare rowing technique on the dynamic RowPerfect ergometer with a single scull. Eight national-level rowers performed on both the RowPerfect ergometer and in a single scull over 500 m, at rates of 24, 26, and 28 strokes/minute. Blade force and oar angle (on-water) and handle force and stroke length (on the ergometer) were measured. Both force and stroke angle/length were normalised from 0 to 100 (where 100 was the peak value). Body positions of the subjects at both the catch and finish of each of these rowing strokes were also compared for each stroke rate. The coefficient of multiple determination (CMD) was used to measure the consistency of force curves over a sample of five sequential strokes for each rower. Cross-correlations were performed between the left- and right-side on-water sculling force curves and a mean of these values with the ergometer curve for each rower. Stroke angle/length, which did not vary with rate, was similar for both forms of rowing. The CMDs showed a high consistency across the normalised strokes of each subject (approximately 0.98). Cross-correlation values of 0.91, 0.92, and 0.93 were recorded between the force curves from the ergometer and on-water trials for stroke rates of 24, 26, and 28 strokes/minute, respectively. The mean trunk, thigh and lower leg angles at the catch and finish of the stroke were also similar across the stroke rates as determined by t-tests. Results indicate that technique used on the RowPerfect ergometer was similar to that for on-water sculling, thus validating its use in off-water training.  相似文献   

8.
研究目的:了解我国优秀赛艇运动员肺通气机能及其与成绩的相关性,以期发现问题,指导训练。研究方法:以国家赛艇集训队112名运动员为研究对象。利用独立样本T检验、方差分析和Pearson相关进行统计分析。结果:1)赛艇运动员肺功能特点FEV1%(T)为76.5%,显著低于正常成人83%的标准,但FEV1%(G)却达到了93.29%,FEV3%达到了99.98%,超出了普通成年人的水平。说明赛艇运动员吸气不充分,呼气功能相对好于吸气功能。2)赛艇运动员肺通气功能与2 000m测功仪成绩相关性研究发现2 000m测功仪成绩与多数肺功能指标间存在中度甚至高度负相关,即肺功能越好,测功仪上2000m用时越短,成绩越好。结论:赛艇运动员肺通气机能良好,但呼气机能相对好于吸气机能。赛艇运动员肺通气机能与运动成绩之间存在中、高度相关,肺通气机能越好,比赛成绩越好。  相似文献   

9.
Back injury is common in rowers. Asymmetrical lower limb reaction force on the foot stretchers during rowing may compromise trunk biomechanics and lead to back injury. However, such a mechanism remains putative. Therefore, this study examined lower limb reaction force in experienced rowers with and without a history of back injury. Six rowers who suffered from back injury for more than one week in the past year and another 19 rowers who were never injured performed maximal exertion rowing on a fixed-head rowing machine for 30 strokes. Peak force, average and peak loading rate of the lower limb reaction force during the middle 10-stroke were recorded using strain-gauge transducers placed at the foot stretchers. Asymmetries and intra-limb variability were quantified as asymmetry indices and coefficients of variation, respectively. No significant asymmetry was observed in all selected kinetic parameters between the injured and healthy rowers (p = 0.448–0.722, Hedges' g = 0.162–0.310). Subgroup analyses also did not reveal any significant kinetic differences between injured and healthy scullers or sweepers (p = 0.194–0.855, Hedges' g = 0.203–0.518). Rowers with a history of back injury, regardless of the rowing types, did not demonstrate greater lower limb reaction force asymmetry when compared with healthy rowers.  相似文献   

10.
The rowing stroke is a leg-driven action, in which forces developed by the lower limbs provide a large proportion of power delivered to the oars. In terms of both performance and injury, it is important to initiate each stroke with powerful and symmetrical loading of the foot stretchers. The aims of this study were to assess the reliability of foot force measured by footplates developed for the Concept2 indoor ergometer and to examine the magnitude and symmetry of bilateral foot forces in different groups of rowers. Five heavyweight female scullers, six heavyweight female sweep rowers, and six lightweight male (LWM) rowers performed an incremental step test on the Concept2 ergometer. Vertical, horizontal, and resultant forces were recorded bilaterally, and asymmetries were quantified using the absolute symmetry index. Foot force was measured with high consistency (coefficient of multiple determination>0.976 ± 0.010). Relative resultant, vertical, and horizontal forces were largest in LWM rowers, whilst average foot forces significantly increased across stroke rates for all three groups of rowers. Asymmetries ranged from 5.3% for average resultant force to 28.9% for timing of peak vertical force. Asymmetries were not sensitive to stroke rate or rowing group, however, large inter-subject variability in asymmetries was evident.  相似文献   

11.
In this study, the effect of strapping rowers to their sliding seat on performance during 75 m on-water starting trials was investigated. Well-trained rowers performed 75 m maximum-effort starts using an instrumented single scull equipped with a redesigned sliding seat system, both under normal conditions and while strapped to the sliding seat. Strapping rowers to their sliding seat resulted in a 0.45 s lead after 75 m, corresponding to an increase in average boat velocity of about 2.5%. Corresponding effect sizes were large. No significant changes were observed in general stroke cycle characteristics. No indications of additional boat heaving and pitching under strapped conditions were found. The increase in boat velocity is estimated to correspond to an increase in average mechanical power output during the start of on-water rowing between 5% and 10%, which is substantial but smaller than the 12% increase found in a previous study on ergometer starting. We conclude that, after a very short period of adaptation to the strapped condition, single-scull starting performance is substantially improved when the rower is strapped to the sliding seat.  相似文献   

12.
Between limb movement asymmetries and foot force production asymmetries are thought to be detrimental for both rower's performance and risk of injury, particularly when rowing frequently on ergometers. Several ergometers with different designs can be used by rowers as part of their indoor training. Hence, this study aimed to compare asymmetries in lower limb joint kinematics and foot force production with respect to ergometer design and rowing intensity. A new symmetry index was proposed to assess these asymmetries in elite rowers during a test on three ergometers. Additionally, the asymmetry in lower limb length was assessed to investigate its relationship with kinematic and kinetic asymmetries. Parameters describing medium (5–10%) or high (>10%) asymmetries were compared between rowing ergometers and intensities. Results indicated medium asymmetries for the ankle joint angle and hip–knee joint accelerations and high asymmetries for the resultant force and the ankle joint acceleration associated with a low inter-stroke variability. Kinetic asymmetry was neither correlated to kinematic asymmetry nor with lower limb length asymmetry. The use of a mobile ergometer led to higher joint acceleration asymmetries. Further studies are necessary to investigate the relation between these findings and muscular adaptations that may increase the risk of lower-back injury.  相似文献   

13.
For a rowing crew to be successful, the movements of the rowers need to be well coordinated. Because rowers show individual force patterns, they have to adapt their movements when rowing as a crew. In this exploratory study, these hypothesized changes in movement pattern were examined. The force graphs of six elite coxless fours crews were recorded over 11 training runs using strain gauges attached to the oars. A detailed force analysis showed that form differences, but not area differences, between force patterns decreased when force output increased as a result of two different processes. First, increasing force output reduced form differences instantaneously by reducing the individual variation in force patterns. Secondly, the kinaesthetic perception of form differences is easier than that of area differences. This better perception facilitates the adaptation of movement patterns, especially when force output is high.  相似文献   

14.
Effect of stroke rate on the distribution of net mechanical power in rowing   总被引:1,自引:1,他引:0  
The aim of this study was to assess the effect of manipulating stroke rate on the distribution of mechanical power in rowing. Two causes of inefficient mechanical energy expenditure were identified in rowing. The ratio between power not lost at the blades and generated mechanical power (P(rower)) and the ratio between power not lost to velocity fluctuations and P(rower) were used to quantify efficiency (e(propelling) and e(velocity) respectively). Subsequently, the fraction of P(rower) that contributes to the average velocity (chi(boat)) was calculated (e(net)). For nine participants, stroke rate was manipulated between 20 and 36 strokes per minute to examine the effect on the power flow. The data were analysed using a repeated-measures analysis of variance. Results indicated that at higher stroke rates, P(rower), chi(boat), e(propelling), and e(net) increase, whereas e(velocity) decreases (P < 0.0001). The decrease in e(velocity) can be explained by a larger impulse exchange between rower and boat. The increase in e(propelling) can be explained because the work at the blades decreases, which in turn can be explained by a change in blade kinematics. The increase in e(net) results because the increase in e(propelling) is higher than the decrease in e(velocity). Our results show that the power equation is an adequate conceptual model with which to analyse rowing performance.  相似文献   

15.
16.
The effect of anthropometric differences in shank to thigh length ratio upon timing and magnitude of joint power production during the drive phase of the rowing stroke was investigated in 14 elite male rowers. Rowers were tested on the RowPerfect ergometer which was instrumented at the handle and foot stretcher to measure force generation, and a nine segment inverse dynamics model used to calculate the rower's joint and overall power production. Rowers were divided into two groups according to relative shank thigh ratio. Time to half lumbar power generation was significantly earlier in shorter shank rowers (p = 0.028) compared to longer shank rowers, who showed no lumbar power generation during the same period of the drive phase. Rowers with a relatively shorter shank demonstrated earlier lumbar power generation during the drive phase resulting from restricted rotation of the pelvic segment requiring increased lumbar extension in these rowers. Earlier lumbar power generation and extension did not appear to directly affect performance measures of the short shank group, and so can be attributed to a technical adaptation developed to maximise rowing performance.  相似文献   

17.
Abstract

In this study, we evaluated the extent to which 2000-m rowing ergometer performance times predicted final rankings at the World Rowing Championships in a sample of 638 rowers of both sexes and body-mass classifications (i.e. open-category and lightweight rowers). Rowing ergometer performance times were examined using a questionnaire, and in 17 of 23 events they were positively correlated (P ≤ 0.049) with the final rankings at the Championships. The highest correlations were for the ergometer performance times achieved by rowers in lightweight men's single sculls (r = 0.78; P = 0.005), women's single sculls (r = 0.75; P = 0.002), men's single sculls (r = 0.72; P = 0.004), and lightweight men's double sculls (r = 0.72; P < 0.001). We used linear regression to establish regression equations to predict final rankings based on 2000-m rowing ergometer performance times for each event in which there was a correlation greater than r = 0.50. Although correlations in 12 events met this criterion, the large standard errors of the estimate hindered ranking predictions in all of the studied events. Regression equations could be used to determine the most probable 2000-m ergometer performance time for a rower to achieve specific rankings at the World Rowing Championships.  相似文献   

18.
While numerous studies have investigated the biomechanics of able-bodied rowing, few studies have been completed with para-rowing set-ups. The purpose of this research was to provide benchmark data for handle kinetics and joint kinematics for able-bodied athletes rowing in para- rowing set-ups on an indoor ergometer. Able-bodied varsity rowers performed maximal trials in three para-rowing set-ups; Legs, Trunk and Arms (LTA), Trunk and Arms (TA) and Arms and Shoulders (AS) rowing. The handle force kinetics of the LTA stroke were comparable to the values for able-bodied literature. Lumbar flexion at the catch, extension at the finish and total range of motion were, however, greater than values in the literature for able-bodied athletes in the LTA set-up. Additionally, rowers in TA and AS set-ups utilised more extreme ranges of motion for lumbar flexion, elbow flexion and shoulder abduction than the LTA set-up. This study provides the first biomechanical values of the para-rowing strokes for researchers, coaches and athletes to use while promoting the safest training programmes possible for para-rowing.  相似文献   

19.
赛艇技术的生物力学研究   总被引:1,自引:0,他引:1  
使用赛艇多参数遥测分析系统和IPL型高速摄影机同步测试方法,对我国国家赛艇集训队16名高水平运动员(男10,女6)的双桨技术进行了测试研究,分析结果如下:①在三种划桨类型中,“平缓力型”的动力学效率最高。“平缓力型”意味着拉桨力平稳增长达到峰值,然后对称下降直至拉桨结束。②艇速曲线有“单峰型”和“双峰型”两种类型。“单峰型”的特点是艇速变化平稳、能量消耗较少;“双峰型”能量消耗多。出现“双峰型”的主要原因是没有“边拉边按”和运动员身体在滑轨上加速不稳。③建立了浆力有效冲量与艇平均速度、艇速波动程度关系式。④发现一些选手左右手划桨力差别较大,桨叶入水角偏小和“拉提”时拉的不够等问题。  相似文献   

20.
Abstract With the use of three-dimensional whole body scanning technology, this study compared the 'traditional' anthropometric model [one-dimensional (1D) measurements] to a 'new' model [1D, two-dimensional (2D), and three-dimensional (3D) measurements] to determine: (1) which model predicted more of the variance in self-reported best 2000-m ergometry rowing performance; and (2) what were the best anthropometric predictors of ergometry performance, for junior rowers competing at the 2007 and 2008 Australian Rowing Championships. Each rower (257 females, 16.3?±?1.4 years and 243 males, 16.6?±?1.5 years) completed a performance and demographic questionnaire, had their mass, standing and sitting height physically measured and were landmarked and scanned using the Vitus Smart? 3D whole body scanner. Absolute and proportional anthropometric measurements were extracted from the scan files. Partial least squares regression analysis, with anthropometric measurements and age as predictor variables and self-reported best 2000-m ergometer time as the response variable, was used to first compare the two models and then to determine the best performance predictors. The variance explained by each model was similar for both male [76.1% (new) vs. 73.5% (traditional)] and female [72.3% (new) vs. 68.6% (traditional)] rowers. Overall, absolute rather than proportional measurements, and 2D and 3D rather than 1D measurements, were the best predictors of rowing ergometry performance, with whole body volume and surface area, standing height, mass and leg length the strongest individual predictors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号