首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
许多数学竞赛题,构思新颖、独特,有一定的难度,但只要我们善于抓住题目的特征,联想已有的概念、公式、性质、定理等,可巧妙地加以解决。 1联想概念 例1 已知x,y∈[-π/4,π/4],a∈R, 且 x~3 sinx-2a=0, 4y~3 sinycosy a=0, 求cos(x 2y)的值。(1994年全国高中数学联赛题) 分析 将已知条件变形为 x~3 sinx=2a, (2y)~3 sin2y=-2a。  相似文献   

2.
我们知道,f(x)严格单调,f(x)=f(y)x=y(*).看起来很平常的这个性质用来巧解下面几道数学竞赛题却很有趣.1求三角函数值例1(1994年全国高中数学联赛试题)已知x,y∈[-π4,π4],a∈R,且x3+sin x-2a=0,4y3+sin ycos y+a=0,则cos(x+2y)=.分析此题的特点是入口非常小,所求的cos(x+2y)的值好象与题设条件没有什么直接关系.我们对方程组中的三个变量x,y,a的系数进行观察,利用t3+sin t在[-π2,π2]上的单调性和性质(*),就能找到一条通向胜利之路.解由于x3+sin x-2a=0,4y3+sin ycos y+a=0,将第二式乘以2与第一式相加并整理,得x3+sin x=(-2y)3+sin(-2y)…  相似文献   

3.
1一类经典竞赛题1.1解无理方程题1(1990年福州市高中数学竞赛题)解方程(6x 5)[1 (6x 5)2 4] x(1 x2 4)=0.1.2求值题2(1994年全国高中数学联赛试题和1998年第9届“希望杯”全国数学邀请赛高二第二试试题)已知x、y∈[-4π,4π],且x3 sinx-2a=0,4y3 sinycosy a=0.则cos(x 2y)=.题3  相似文献   

4.
我们知道复合函数y=sin(arc sinx)在定义域x∈[-1,1]上都有sin(arc sinx)=x.对于复合函数y=arc sin(sinx)的问题,现行教材仅讨论了x∈[-πc/2,π/2]时,arc sin(sinx)=x的情形,实际上,这个复合函数的定义域是x∈R,而值域是y∈[-  相似文献   

5.
例1求y=cosx+!3sinx,x∈π#6,23π$的值域.思路:形如y=asinx+bcosx的函数通常转化成y=!a2+b2sin(x+θ)的形式.解:y=cosx+!3sinx=2sin(x+π6).由x∈%π6,23π&,得x+π6∈%π3,56π&.∴21≤sin(x+π6)≤1,故1≤y≤2.即原函数的值域为[1,2].例2求y=sin2x-sinx+1,x∈π%3,34π&的值域.思路:形如y=asin2x+bsinx+c(a≠0)的函数,可利用换元法转化为在[-1,1]内的二次函数问题.即求y=at2+bt+c的值域.解:y=sin2x-sinx+1=(sinx-12)2+43.又x∈%π3,34π$,∴sinx∈!22,%$1.而(sinx-21)2+43在!22,%$1上单调递增,∴y∈3-!22,%$1.即所求值域为3-!22,%$1.例3…  相似文献   

6.
一、选择题1.设sinα=-35,cosα=54,那么下列的点在角α的终边上的是().A.(-3,4)B.(-4,3)C.(4,-3)D.(3,4)2.下列四组函数f(x)与g(x),表示同一个函数的是().A.f(x)=sinx,g(x)=xsxinxB.f(x)=sinx,g(x)=1-cos2xC.f(x)=1,g(x)=sin2x+cos2xD.f(x)=1,g(x)=tanxcotx3.tanx+tany=0是tan(x+y)=0的().A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分又不必要条件4.要得到y=sin2x-π3的图象,只需将y=sin2x的图象().A.向左平移3πB.向右平移3πC.向左平移6πD.向右平移6π5.若α、β∈0,π2,则().A.cos(α+β)>cosα+cosβB.cos(α+β)>s…  相似文献   

7.
<正>问题(2018年高考理科数学全国(Ⅰ)卷第16题)已知函数f(x)=2sinx+sin2x,则f(x)的最小值是______.解法赏析思路1f(x)=2sinx+sin2x,由周期函数不妨设x∈[0,2π],f'(x)=2cosx+2cos2x=2(2cos2x=2(2cos2x+cosx-1)=2(2cosx-1)(cosx+1).  相似文献   

8.
构造法是数学解题中富有创造性的思维方法,它要求我们改变思维方向,换一个角度去思考,通过分析具体命题,构造一些新的图形、模型、方程、函数等,使命题中原来隐晦不清的关系和性质,在新的构造中清楚地展现出来,从而简捷地解决原命题·在中学数学中可以进行怎样的构造呢?一、构造函数例1若x、y∈[-π4,π4],a∈R,且满足方程:x3+sinx-2a=0和4y3+sinycosy+a=0,则cos(x+2y)=·分析:此题一时无从着手,研究已知条件,发现两个等式有一些相似的地方,对第二个等式进行变形可得:(2y)3+sin2y+2a=0·对照两等式和所求的结论思考,是否可以找到x和2y的关…  相似文献   

9.
我们知道,asinx+bcosx=a2+b2sin(x+φ),其中ab≠0,tanφ=ab,这个公式叫做辅助角公式.该公式可将异名三角函数化为同名三角函数,在解题中具有广泛的应用.现举例说明,以引起同学们的重视.一、求最值例1当-2π≤x≤2π时,函数f(x)=sinx+3cosx的()(A)最大值是1,最小值是-1(B)最大值是1,最小值是-21(C)最大值是2,最小值是-2(D)解最大值是2,最小值是-1f(x)=sinx+3cosx=2sinx+3π,因为-2π≤x≤2π,所以-6π≤x+π3≤65π,所以-21≤sinx+3π≤1,所以-1≤f(x)≤2·故选(D).例2求函数y=sin2+2sinx·cosx+3cos2x的最小值,并写出使函数y取最小值的解x…  相似文献   

10.
求三角函数最值问题中的参数值问题,是三角中的一个重要内容.而在教材或一些读物中其习题甚少,笔者就以自己积累的资料加以整理,供学习参考.一、应用三角函数值域:|sinx|≤1,|cosx|≤1.例1已知x∈[0,π4],函数f(x)=2asin2x-23asinxcosx a b(a<0)的最大值为1,最小值为-5,求a、b的值.解:f(x)=a(1-cos2x)-3asin2x a b=-a(3sin2x cos2x) 2a b=-2asin(2x 6π) 2a b.因为x∈[0,4π]2x 6π∈[π6,23π],所以sin(2x π6)∈[12,1]又因为a<0,所以-2a 2a b=1,-a 2a b=-5,a=-6,b=1.故a=-6,b=1.注:解此类题,用此法的关键是问题可化归为Asin(ωx φ)或Aco…  相似文献   

11.
一、利用三角函数的有界性利用正弦函数、余弦正数的有界性:|sinx|≤1,|cosx|≤1,可求形如y=Asin(ωx+φ),y=Acos(ωx+φ),(A≠0,φ≠0)的函数的最值.例1.(2000年全国高考题)已知函数y=12cos2x+3√2sinxcosx+1,x∈R,当函数y取得最大值时,求自变量x的集合.解:y=14(2cos2x-1)+14+3√4(2sinxcosx)+1=14cos2x+3√4sin2x+54=12sin(2x+π6)+54.y取得最大值必须且只需2x+π6=π2+2kπ,k∈Z即x=π6+kπ,k∈Z,所以当函数y取得最大值时,自变量x的集合为{x|x=π6+kπ,k∈Z}.二、转化为二次函数例2.求函数y=f(x)=cos22x-3cos2x+1的最值.解:∵f…  相似文献   

12.
在求解三角函数有关问题时,如果能利用三角函数的图象特征解题,将起到事半功倍的作用.下面举例说明.例1如果函数y=sin2x+acos2x的图象关于直线x=π8对称,那么a=.解析:利用正弦余弦函数的图象当自变量取对称轴时函数值取得最大或最小值这一特征得:|sin2.π8+acos2.π8|=a2+1=|22+22a|,解得a=1.例2已知函数f(x)=Asin(ωx+φ)(x∈R)(A>0,ω>0,-π<φ≤π)的图象在y轴右侧的第一个最高点(函数取最大值的点)为M(2,22),与x轴在原点左侧第一个交点为N(-1,0),求函数f(x)的解析式.图1解析:由y=sinx的图象可知,从图象与x轴的交点到达图象最高点(在同…  相似文献   

13.
正弦函数y=Asin(ωx φ)是三角函数的重要内容,历年来都是高考命题的热点.现结合去年全国各地高考试题,根据考查正弦函数的不同内容,进行分类,并探讨其各自不同解法.1.确定函数最小正周期正弦函数y=Asin(ωx φ)的最小正周期为T=2π|ω|.【例1】已知函数y=12sinx πA(A>0)的最小正周期为3π,则A=.解:∵y=12sinx πA=12sin(1Ax πA)(A>0)∴其最小正周期为T=2π1A=2Aπ.则2Aπ=3π故A=32.【例2】函数f(x)=cos2x-23sinxcosx的最小正周期是.解:∵f(x)=cos2x-23sinxcosx=cos2x-3sin2x=-2sin(2x-π6)∴其最小正周期为T=2π2=π.2.求函数…  相似文献   

14.
一、选择题.(本大题12个小题,每小题5分,共60分)1.已知集合A={(x,y)|y=sinx,x∈(0,2π)},B={(x,y)|y=a,a∈R},则集合A∩B的子集个数量多有A.1个B.2个C.4个D.8个2.已知f(x6)=log2x,则f(8)等于()A.21B.43C.8D.183.设f(x)的定义在R上的最小正周期为35π的函数,f(x)=sinxx∈[-23π,  相似文献   

15.
赵传义 《高中数理化》2008,(3):43-44,40,41
一、填空题(每题3分)1.已知cosθ>0,sinθ<0,则θ为第象限角.2.若点P(2,y)为角α终边上的一点,且tanα=2,则y=.3.已知α是第二象限角,且sinα=31,则cotα=.4.函数y=cos(2x 3π)的最小正周期是.5.已知sinx=54,cosx=53,则tan2x=.6.若y=sinx acosx为奇函数,则实数a=.7.已知函数f(x  相似文献   

16.
张乃贵 《新高考》2007,(2):39-42
1.设等差数列{an}的公差为2,an=1,则{an}前项n的和Sn关于n的表达式为.2.在△ABC中,已知sin2A-sin2B-sin2C-sinBsinC=0,则∠A等于.3.已知函数y=f-1(x)的图像过(1,0),则函数y=f21x-1的图像一定过点.4.已知f(x)=ax2 bx 3a b是偶函数,定义域为[a-1,2a],则a b的值为.5.已知sin4π-x=  相似文献   

17.
本文以 2 0 0 4年各地高考三角题为例 ,就题型与策略谈几点拙见 ,以供参考 .1.用公式asinα+bcosα =a2 +b2 sin(α+φ)化为一个角的某个三角函数 .【例 1】 求函数y=sin4 x+2 3sinxcosx-cos4 x的最小正周期和最小值 ,并写出该函数在 [0 ,π]上的递增区间 .解 :y =sin4 x+2 3sinxcosx-cos4 x=3sin2x-cos2x =2sin( 2x-π6)故此函数的周期为π ,最小值为 -2 ,[0 ,π3 ]为递增区间 ,[23 π ,π]为递增区间 .练习 1:求函数y=sinx -12 cosx(x∈R)的最大值 .2 .通过化简转化为以tanα为主元的代数式 .【例 2】 已知tan(α+π4) =2 ,求 12sinαc…  相似文献   

18.
一、利用三角函数的性质求最值1.若函数形如y=asinx+b(或y=acosx+b),可直接利用函数的下列性质来求解:|sinx|≤1,|cosx|≤1.例1求函数y=sin(x-π6)cosx的最值.解析y=sin(x-π6)cosx=12[sin(2x-π6)-sinπ6]=12sin(2x-π6)-41.当sin(2x-π6)=1时,ymax=21-14=41;当sin(2x-π6)=-1时,ymin=-21-41=-43.2.若函数形如y=acssiinnxx++db(或y=acccoossxx++db),先逆向解得sinx(或cosx)的表达式,再结合性质|sinx|≤1(或|cosx|≤1)来求解.例2求函数y=8cos2x+83cos2x+1的最值.解析由原式逆向解得cos2x=38y--y8,由0≤cos2x≤1,得0≤8-y3y-8≤1,解…  相似文献   

19.
一、选择题(每小题5分,共60分)1.log2sin1π2 log2cos1π2的值为().A.4B.-4C.2D.-22.函数f(x)=tanωx(ω>0)的图象的相邻两支截直线y=π4所得线段长为4π,则f4π的值是().A.0B.1C.-1D.4π3.将函数y=sin2x-4π的图象按向量a平移后得到函数y=sin2x的图象,则向量a可以是().A.4π,0  相似文献   

20.
1.已知f(x+y)=f(x)·f(y),且f(1)=2,求ff((21))+ff((32))+ff((34))+…+ff((22000065))的值.2.已知函数f(x)=log21(x2+2x+4),试比较f(-2006)与f(-2005)的大小.3.已知数列{an}的前n项和Sn=log12006(1+n),求a2006+a2007+…+a20062-1.4.已知a≠0,且sinx+siny=a,cosx+cosy=a,求(sinx+cosx)2006的值.5.求证:log321006+log222006+1log1672006<1.6.已知直线kx+(k+1)y-1=0与坐标轴所构成的直角三角形的面积为Sk,求S1+S2+…+S2006.参考解答1.取y=1,则f(x+1)=f(x)·f(1)=2f(x),即f(fx(+x)1)=2.所以ff((21))+ff((23))+f(4)f(3)+…+ff((22000065))=2+22…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号