首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在解二元一次方程组时,由于有的同学数学基础不扎实,或解题时粗心大意,常会出现这样或那样的错误.针对这种现象,本文就举几个例子作如下分析,以便帮助同学们及时纠正错误,为今后的学习扫除部分障碍.一、加减时符号出错例1解方程组2x+3y=33x-2y=11①②错解:①×3,得6x+9y=9.③②×2,得6x-4y=22.④③-④得5y=-13,解得y=-135.把y=-135代入①得,2x-395=3,解这方程得x=275.所以方程组的解是x=275y=-135.剖析:③-④时,应是9y-(-4y)=-13,即13y=-13,所以,解得y=-1;把y=-1代入①后,则为2x-3=3,所以,解得x=3.因此,方程组的解应是x=3y=-1.二、在化简去…  相似文献   

2.
解二元一次方程组的基本方法是代入消元法和加减消元法.同学们在解题时,除熟练运用这两种基本方法外,还应当结合方程组的特征,灵活使用一些巧妙解法,这样不仅可以简化解题过程,提高解题的速度,而且可以养成爱动脑的好习惯.一、整体代入法例1解方程组3x=4y+7,(1)9x-10y=25.(2 简析:由于方程(2)中的9x可化成3×3x,故可视3x为整体,用(1)中的4y+7代换,这样既消去了x,又可避免方程变形之烦.解:将(1)代入(2),得3(4y+7)-10y=25,解之得y=2.将y=2代入(1),得3x=4×2+7,∴x=5.∴原方程组的解是x=5,y=2 二、整体加减法例2解方程组3(x-2y)+4(y+1)=10,…  相似文献   

3.
误区一:最大整数解就是目标函数取最大整数值.【例1】 已知x,y满足不等式组2x-y-3>02x+3y-6<03x-5y-15<0 求x+y的最大整数解.错解:依约束条件画出可行域如下图所示由3x-5y-15=02x+3y-6=0解得x=7519y=-1219∴x+y=7519-1219=6319,∴x+y的最大整数解为3.点击:错误主要原因是把目标函数的最大整数值与最大整数解混为一谈,最大整数解是使目标函数取得最大值时的整数解,显然,此时的最大值一定是整数值.正解:于错解的前部分过程相同,∴x+y=6319=3619.∴令x+y=3则y=3-x代入可行域解得3相似文献   

4.
二元一次方程中经常出现字母系数 ,我们可以根据题中的条件把它确定下来 .下面分类举例说明 .一、根据方程组的解的意义求字母系数 例 1 已知方程组 ax+by=7,bx+ay=5 的解是x=1,y=2 .则 a+b=.解 :由方程组的解的意义得a+2 b=7,12 a+b=5 .2  解之 ,得 a=1,b=3 .故 a+b=4.注 :本题若用整体思想 ,求解更方便 .另解 :( 1+2 )÷ 3 ,得 a+b=4.二、根据方程组有无数个解求字母系数 例 2 若方程组 x-my=2 ,1nx-y=3 2 有无数个解 ,那么 m= ,n=.解 :由 1,得 x=my+2  3 ,把 3代入 2 ,得 ( mn-1) y=3 -2 n∵原方程组有无数个解 ,∴mn-1=0 ,3 -2 n=…  相似文献   

5.
解二元一次方程组 ,目标是求出方程组的解 .实现这一目标的基本思想是“消元”,初学解方程组 ,往往不能正确运用“代入法”和“加减法”消元而导致错误 .例 1 解方程组 x+ 5y=6 ,  13x- 6 y=4 .  2错解 :由 1,得 x=6 - 5y.   3把 3代入 1,得 6 - 5y+ 5y=6 .∴ 6 =6 .故方程组无解 .剖析 :为什么会出现 6 =6呢 ?原因就在于由方程 1得到了方程 3,却又把 3代回了 1,犯了循环代入的错误 .解方程组时 ,必须用上每一个方程 .如本题在由 1得到 3后 ,只能把3代入 2 ,而不能再代入 1.正解 :由 1,得 x=6 - 5y.3把 3代入 2 ,得 3( 6 - 5y) - 6 y=4…  相似文献   

6.
解二元一次方程组的基本思想是消元,即化“二元”为“一元”,而消元的方法多种多样.下面仅举一例,介绍几种解二元一次方程组的常用方法.例:解方程组3(x-1)=y+5,5(y-1)=3(x+5) .解法1:代入消元法原方程组可化为3x-y=8,(1)3x-5y=-20.(2 由(1)得:y=3x-8.(3)(3)代入(2),得:3x-5(3x-8)=-20.解得摇x=5,代入(3)得摇y=7.因此,原方程组的解为x=5,y=7 .解法2:加减消元法原方程组可化为3x-y=8,(1)3x-5y=-20.(2 (1)-(2),得4y=28,所以摇y=7.把y=7代入(1)得摇3x-7=8,所以摇y=5.所以摇x=5,y=7 .评注:代入消元法与加减消元法是解二元一次方程组的基本方…  相似文献   

7.
20 0 1年全国高中数学竞赛第一试第 11题为 :函数 y =x + x2 - 3 x+ 2的值域为.下面提供五种解法 ,以飨读者 .解法 1 移项得 y- x=x2 - 3 x+ 2 ,上式等价于 (y- x) 2 =x2 - 3 x+ 2 ,y- x≥ 0 .12由 1得 x=y2 - 22 y- 3 ,代入 2得 y- y2 - 22 y- 3≥ 0 ,即 (y- 1) (y- 2 )2 y- 3 ≥ 0 ,解得 1≤ y<32 或y≥ 2 .故原函数的值域为 [1,32 )∪ [2 ,+∞ ) .解法 2 原函数式可变形为 y=x+(x- 32 ) 2 - 14,∵ x2 - 3 x+ 2≥ 0 ,∴ x≤ 1或 x≥ 2 .令 t=x- 32 ,则 t≤ - 12 或 t≥ 12 ,y=t+ 32 + t2 - 14.当 t≥ 12 时 ,y是 t的增函数 ,当 t=12时 ,…  相似文献   

8.
看到本文标题 ,你也许很吃惊 :还有用“机械”解方程组的方法吗 ?当然 ,这里的“机械化”不是这个意思 ,为解开这个疑问 ,我们一起先解几个二元一次方程组吧 .例 1 解下列方程组 :( 1) 3x-2 y=7,5x +4 y=19;①②( 2 ) 2 y=3x -7,5x+4 y=19;③④( 3 )3 (x -1) =2 ( y+2 ) ,x4+y5=192 0 .⑤⑥分析 对于方程组 ( 1) ,由 ①× 2 +②得         11x =3 3 ,x=3 .把x=3代入②得y=1.对于方程组 ( 2 ) ,可由④ -③ × 2得5x =19-2 ( 3x-7) ,11x=3 3 ,x=3 .代入③得 y =1.也可将③移项 ,化成 3x -2 y=7. ⑦⑦式与④式联立 ,就是方程组 ( 1)…  相似文献   

9.
解二元 (或三元 )一次方程组除教材中介绍的代入消元法和加减消元法两种基本解法外 ,为了开阔同学们的视野 ,提高解题能力 ,本文补充几种解法 ,供参考。一、整体代入法———当方程组中某个未知数的系数成整数倍时 .例 1 解方程组 2x +5 y =- 2 1 ①x +3y =8   ②解 :由①得 2 (x +3y) -y =- 2 1 ③ ,把②代入③得 16 - y =2 1,y =37,把 y =37代入②解得x =- 10 3,∴ x =- 10 3y =37二、消常数项法———当方程组中的常数项成整数倍时 .例 2 解方程组4x +3y =10  ①9x - 7y =- 5  ②解 :① +②× 2得2 2x - 11…  相似文献   

10.
.整体代入 ,,.l一31一41一5 一一一一一一例1解方程组3x Zy一8,6x gy=21. 分析3x十Zy可看成一个整体,将方程②变形为 2(3x 2夕) 5夕一21,将方程①整体代入,得 2 XS十sy=21,解得y一1,把y一1代人①得x一2. J二夕x y 工之x z①② yzy十z 护!|!、||l、 组 程减方加解体整42.例 分析  相似文献   

11.
例 1.已知 a2 b2 =6 ab且 a>b>0 ,则 a ba- b=。 (2 0 0 1年北京市中学生数学竞赛初二决赛题 )解 :设 a=x y,b=x- y,则将其代入 a2 b2 =6 ab中 ,得 (x y) 2 (x- y) 2 =6 (x y) (x- y)展开括号 ,化简整理得 4 x2 =8y2。而 a>b>0 ,∴ x>y>0 ,∴ x2y2 =2 ,∴ xy=2 ,另 a b=2 x,a- b=2 y,因此 a ba- b=2 x2 y=xy=2。二、求最值范围例 2 .已知实数 a、b满足 a2 ab b2 =1,且 t=ab- a2 - b2 ,那么 t的取值范围是。 (2 0 0 1年 TI杯全国初中数学竞赛 A卷试题 )解 :设 a=x y,b==x- y,代入已知式得(x y) 2 (x y) (x- y) (x- y…  相似文献   

12.
换元法是数学中的一个重要的思想方法 .巧妙地利用换元法解题 ,可以使问题化繁为简 ,化难为易 .例 1 已知 x 3- x- 1 =2 ,求x 3 x- 1的值 .解 设 x 3 x- 1 =m,将此式与已知式相乘可得 ( x 3) - ( x- 1 ) =2 m,∴m=2 ,即 x 3 x- 1 =2 .评注 这种在求某代数式的值时 ,把这个式子的本身进行换元的方法可称之为“自身代换 .”例 2 解方程( 7 4 3) x2 ( 2 3) x- 2 =0 .解 因为 ( 2 3) 2 =7 4 3,故可设 t=( 2 3) x,则原方程即t2 t- 2 =0 ,解得 t1 =1 ,t2 =- 2 ,∴x1 =( 2 - 3) t1 =2 - 3,x2 =( 2 - 3) t2 =- 4 2 3.评…  相似文献   

13.
例1已知y与x-1成正比例,且当x=-5时,y=2,求y与x的函数关系式.错解:设y=kx,把x=-5,y=2,代入得2=-5k,解得k=-25,于是y与x的函数关系式是y=-52x.剖析:把y与x-1成正比例误认为y与x成正比例,所以错了.正解:设y=k(x-1),把x=-5,y=2,代入得2=k(-5-1),所以k=-31,所以y与x的函数关系式是y  相似文献   

14.
活用一次方程或一次方程组的解可巧妙解题 ,现略举几例 ,供同学们学习时参考 .例 1 已知关于 x、y 的方程组3x - 4y=- 6 ,ax + 2 by=- 4和 3bx+ 2 ay=0 ,2 x- y=1有相同的解 ,求 a和 b的值 .分析 :两个方程组的解相同 ,则这个解必定同时适合这两个方程组中的四个方程 ,从而它必定是方程组( 1) 3x- 4y=- 6 ,2 x- y=1和 ( 2 ) ax+ 2 by=- 4,3bx+ 2 ay=0 的解 .因此 ,可有如下巧解 .解 :解方程组 3x- 4y=- 6 ,2 x- y=1. 得 x=2 ,y=3.把 x=2 ,y=3.代入 ( 2 )可得 2 a+ 6 b=- 4,6 a+ 6 b=0 .解之 ,得 a=1,b=- 1.例 2 王明和李芳同求方程 ax + b…  相似文献   

15.
一、巧用平方法 ,整体代入求值。例 1.已知 nm mn =3 22 ,求nm mn的值。解 :由 nm mn=3 22 两边平方 ,得nm mn 2 =92 ,∴ nm mn=52 。∴ nm mn=52 =12 10。二、巧用过渡值 ,变形求值式 ,整体代入求值。例 2 .已知 x=2 - 12 1,y=2 12 - 1,求二次根式 x2 y2 16的值。解 :∵ x=2 - 12 1=3- 2 2 ,y=2 12 - 1= 3 2 2 , ∴ x y=6,xy=1。∴原式 =( x y) 2 - 2 xy 16=62 - 2× 1 16=50 =52。三、巧用非负数的性质 ,求出字母的值 ,直接代入求值。例 3.已知 x2 y2 - 6x- 2 y 10 =0。求 ( x y ) 2 - 4 xyx- xy的值。解 :把已知等式左端配方 ,…  相似文献   

16.
二元二次方程组的教学中,在学生的作业里往往会出现产生客解的情况。如初中代数第三册习题九1(1)题,解方程组: {x y 1=0 ① x~2 4y~2=8 ②′ [解] 由① x=-(y 1) ①′把①′代入② (y 1)~2 4y~2=8,即 5y~2 2y-7=0, ∴ y=1,y=-7/5。把y=1代入②得x=±2; 把y=-7/5代入②得x=±2/5。  相似文献   

17.
一、整体换元法例1计算20+142√3√+20-142√3√.解:设20+142√3√+20-142√3√=x,两边立方,得20+142√+20-142√+3202-(142√)3√2(20+142√3√+20-142√√)=x3,∴x3-6x-40=0,∴(x-4)(x2+4x+10)=0.∵x2+4x+10=(x+2)2+6>0,∴x-4=0,∴x=4.故20+142√3√+20-142√3√=4.二、局部换元法例2解方程5x2+x-x5x2-1√-2=0.解:设y=5x2-1√,则原方程可化为y2+x-xy-1=0,∴(y-1)(y-x+1)=0,解得y=1或y=x-1.当y=1时,5x2-1√=1,解得x1,2=±10√5;当y=x-1时,5x2-1√=x-1,解得x3=12,x4=-1,经检验,x3=12,x4=-1是增根.故原方程的根是x1,2=±10√5.三、常值换元法…  相似文献   

18.
一、构造方程例1已知a,b缀R,且a3+b3=2,求a+b的最大值.解设a+b=t,则a3+b3=(a+b)(a2-ab+b2)=t(t2-3ab)=2,即ab=t3-23t,所以a,b是方程x2-tx+t3-23t=0的两实根.故驻=t2-4×t3-23t≥0.解得0相似文献   

19.
一、活用加减法有些一次方程组,各项系数都比较大,直接采用代入法或加减法消元都不方便。若借助于方程组的结构特征,先用加减法化简方程组后得到简单形式的方程组,再进行消元求解。例1:解方程组: 解:由(1)+(2),得: 500x+1000y=2000 x+2y=4.(3) 解方程组: 由(2)-(3)×177,得:  相似文献   

20.
1 设元代数 ,化已知为未知例 1 若x =12 2 0 0 2 - 12 0 0 2 ,求x2 1 x的值 .分析  2 0 0 2是一个较大、带根号的无理数 ,直接代入较复杂 ,尝试用字母换元代入 .解 设 y=2 0 0 2 ,则x =12 y - 1y ,x2 1=14 y 1y2 ,因为 y 1y >0 .所以原式 =14 y 1y2 12 y- 1y =12 y 1y 12 y- 1y =y =2 0 0 2 .例 2 计算36 33× 36 35 × 36 39× 36 41 36 -36 36 × 36 38.解 设 36 37=t,则原式 =(t - 4) (t- 2 ) (t 2 ) (t 4) 36- (t - 1) (t 1)=(t2 - 10 ) 2 - (t2 - 1)=t2 - 10 -t2 1=- 9.2 设元代式 ,无理变有理有些题目的…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号