首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 453 毫秒
1.
用流变相合成了水杨酸钐。通过热重分析(TG/DTG/DTA)技术确定了固体物质的组成,同时研究了水杨酸钐晶体Sm2(C7H5O3)6的热分解过程。结果表明,Sm2(C7H5O3)6的热分解过程为多步分解进行,其实验失重率与理论计算失重率相符。  相似文献   

2.
用流变相合成了水杨酸钙。通过热重分析(TG/DTG)技术确定了固体物质的组成,同时研究了水杨酸钙晶体Ca(HSal)2.2H2O的热分解过程。结果表明,Ca(HSal)2.2H2O的热分解过程为多步分解进行,其实验失重率与理论计算失重率相符。  相似文献   

3.
按照文献合成了三元固体配合物[Sm(C9H6NO)2(C6H5COO)]·H2O通过红外光谱进行表征.利用Hess定理设计了配位反应的热化学循环,并在常压298.15K下,分别测定了六水氯化钐、苯甲酸、8-羟基喹啉以及配合物在混合溶剂中的溶解焓,根据热化学原理求出了298.15K时,配位反应的反应焓;并进一步计算出了[Sm(C9H6NO)2(C6H5COO)]·H2O三元固体配合物的标准摩尔生成焓.  相似文献   

4.
合成了硝酸钐与丙氨酸的稀土氨基酸配合物Sm(Ala)4(NO3)3.H2O。采用具有恒温环境的反应热量计,在298.2K时,测定了Sm(Ala)4(NO3)3.H2O在水中的溶解焓,并计算出配离子Sm(Ala)43+在298.2K时的标准生成焓ΔHf,θm[,Sm(Ala)43+,aq,298.2K]=-2936.7 kJ.mo^l-1。  相似文献   

5.
按照文献合成了三元固体配合物[Sm(C9H6NO)2(C6H5COO)]·H2O,通过红外光谱进行表征.利用Hess定理设计了配位反应的热化学循环,并在常压298.15K下,分别测定了六水氯化钐、苯甲酸、8-羟基喹啉以及配合物在混合溶剂中的溶解焓,根据热化学原理求出了298.15K时,配位反应的反应焓;并进一步计算出了[Sm(C9H6NO)2(C6H5COO)]·H2O三元固体配合物的标准摩尔生成焓.  相似文献   

6.
用循环伏安法研究了六个Costa型辅酶B12模型化合物[RCo(Do)(DoH)pnH2O]CLO4(R=n-C3H7,i-C4H9,n-C4H9;n-C5H11,C-C6H11,C6H5CH2,(Do)(DoH)pn=N,N-双(2,3-丁二酮-2-亚胺-3-肟)丙二胺)的电化学性质,发现此类模型化合物的电化学行为包含了中心钴价态的变化:Co(Ⅲ)→Co(Ⅱ)→Co(Ⅰ)以及Co-C键的断裂和形成过程,讨论了R基对氧化还原电位的影响,同时,用UV-Visible光谱检测了此类化合物的热分解稳定性。  相似文献   

7.
利用水热合成技术成功地制备了一个新的配位聚合物{[Eu(H2TPIDC)(H2O)3]·2H2O}n(1),并对其进行了元素分析、热失重分析和X-射线单晶衍射测定.该配合物结晶于单斜晶系,空间群为P21/c,晶胞参数为:a=13.349(5),b=11.644(3),c=13.045(3),β=115.713(5)°,V=1826.9(13)3,C12H16EuN6O9,Mr=540.26,Dc=1.961g/cm3,F(000)=1056,Z=4,R1=0.0443,ωR2=0.0853.  相似文献   

8.
为探究配体维生素B3(C6H5NO2)、8-羟基喹啉(C9H7NO)及其稀土配合物[RE(C6H4NO2)2(C9H6NO)].2H2O(RE=La、Nd、Sm)对红酵母生物活性的影响,本实验采用平板培养皿法和抑菌圈法测定了上述三元配合物及其配体对野生红酵母和实验红酵母生长活性的影响通过比较分析抑菌圈直径的大小,我们发现8-羟基喹啉(C9H7NO)对红酵母抑制作用较强,而维生素B3没有抑制作用,与稀土(RE=La、Nd、Sm)形成三元配合物后,Sm的三元配合物抑菌能力得到了加强,而Nd和La的三元配合物抑菌能力减弱初步推测Sm配合物可应用于红酵母危害的防治  相似文献   

9.
采用TG-DSC方法研究了K3[AL(C2O4)3]·3H2O和K2[Cu(C2O4)2]·2H2O两个配合物的热分解反应过程,对其中部分热解过程进行了动力学计算。由Friedman、Ozawa-Flynn-Wall、ASTME698三种方法得出峰温时的活化能值与指前因子值。应用Achar方法计算拟合得到了比较合理的机理函数。  相似文献   

10.
以五水硝酸铋、水杨酸、维生素B3为原料,摩尔比为1:2:1合成了一种新型的三元配合物.通过元素分析、摩尔电导、紫外光谱、红外光谱、热重与差热分析对其结构进行了表征,确定其分子式为[Bi(C7H5O3)2C6H4NO2(H2O)2].2H2O.实验表明,水杨酸和烟酸均脱去羧基的质子形成羧酸根与Bi3+离子双齿配位.根据TG-DSC曲线可以看出,当温度为81oC时配合物开始分解,首先失去2个结晶H2O,接着失去2个水杨酸根,再失去1个烟酸根,最后残余物为Bi和Bi2O3的混合物.  相似文献   

11.
采用提拉法(CZ法)生长出了Sm3+:NaY(WO4)(2简称Sm3+:NYW)单晶,给出晶体的较佳生长工艺:晶体沿[100]生长,转速为15—20r/min,提拉速度为1.0—2.0mm/h,分五个程序退火。TG-DTA分析得到晶体的熔点为1203℃。通过等离子体发射光谱仪检测晶体中稀土元素Sm3+的含量。另外,测量了室温下250—2000nm范围内的吸收和透过光谱以及在405nm激发下的上转换荧光发射谱。结果表明:Sm3+:NYW晶体具有易于生长、分凝系数高、吸收峰强、吸收带宽等优点,在LD泵浦的激光器中将具有较好的应用前景。  相似文献   

12.
按照文献合成了两种稀土(La,Sm)邻菲罗啉硫代脯氨酸三元固体配合物,通过红外光谱进行表征.利用Hess定理设计了配位反应的热化学循环,并在常压、298.15K下,分别测定了七水氯化镧(六水氯化钐)、邻菲罗啉、硫代脯氨酸及其配合物在溶剂中的溶解焓,根据热化学原理求出了298.15K时两个配位反应的反应焓;并进一步计算出...  相似文献   

13.
We studied the decomposition of two haloacetic acids (HAAs), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), in water by single oxidants ozone (O3) and ultraviolet radiation (UV) and the advanced oxidation processes (AOPs) constituted by the combinations of O3/UV, H2O2/UV, O3/H2O2, and O3/H2O2/UV. The concentrations of HAAs were analyzed at specified time intervals to track their decomposition. Except for O3 and UV, the four combined oxidation processes remarkably enhance the decomposition of DCAA and TCAA owing to the generated very reactive hydroxyl radicals. The fastest decomposition process is O3/H2O2/UV, closely followed by O3/UV. DCAA is much easier to decompose than' TCAA. The kinetics of HAA decomposition by O3/UV can be described well by a pseudo first-order reaction model under a constant initial dissolved O3 concentration and fixed UV radiation. Humic acids and HCO3 in the reaction system both decrease the decomposition rate constants for DCAA and TCAA. The amount of H2O2 accumulates in the presence of humic acids in the O3/UV process.  相似文献   

14.
分别以表面活性剂PEG-400和PEG-600为分散剂,FeSO4.7H2O和Na2CO3室温下发生固相反应,得到纳米氧化铁前驱体FeCO3,热解后即可得到产品.经TG/DTA、IR、XRD对前驱体及其热解产物进行表征,表明前驱体FeCO3极易分解成纳米Fe2O3,550℃热解得到了纯晶相的三方Fe2O3,粒度分别约为48.2 nm,50.7 nm.  相似文献   

15.
采用TG—DSC方法研究了配合物K3[Al(C2O4)3]·3H2O的热分解反应过程,对其进行了动力学计算。由Friedman、Ozawa—Flynn—Wall、ASTME698三种方法得出峰温时的活化能值与指前因子值。应用Achar方法计算拟舍得到了最佳的机理函数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号