首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
教育   1篇
体育   1篇
  2018年   1篇
  2006年   1篇
排序方式: 共有2条查询结果,搜索用时 31 毫秒
1
1.
Urine specific gravity (USG) is the most commonly reported biochemical marker used in research and applied settings to detect fluid deficits in athletes, including those participating in combat sports. Despite the popularity of its use, there has been a growing debate regarding the diagnostic accuracy and the applicability of USG in characterizing whole-body fluid status and fluctuations. Moreover, recent investigations report universally high prevalence of hypohydration (~90%) via USG assessment in combat sport athletes, often in spite of stable body-mass. Given the widespread use in both research and practice, and its use in a regulatory sense as a ‘hydration test’ in combat sports as a means to detect dehydration at the time of weigh-in; understanding the limitations and applicability of USG assessment is of paramount importance. Inconsistencies in findings of USG readings, possibly as a consequence of diverse methodological research approaches and/or overlooked confounding factors, preclude a conclusive position stand within current combat sports research and practice. Thus the primary aim of this paper is to critically review the literature regarding USG assessment of hydration status in combat sports research and practice. When taken on balance, the existing literature suggests: the use of laboratory derived benchmarks in applied settings, inconsistent sampling methodologies, the incomplete picture of how various confounding factors affect end-point readings, and the still poorly understood potential of renal adaptation to dehydration in combat athletes; make the utility of hydration assessment via USG measurement quite problematic, particularly when diet and training is not controlled.  相似文献   
2.
[1]Engebretsen,L.,Sudan,M.,2002.Harmonic Broadcasting is Bandwidth-Optimal Assuming Constant Bit Rate.Proc.Annual ACM-SIAM Symposium on Discrete Algorithms.San Francisco,CA,USA. [2]ETSI,2005.IP Datacast over DVB-H:Content Delivery Protocols.ETSI Standard,Draft,V0.0.9. [3]Horn,G.B.,Knudsgaard,P.,Lassen,S.B.,Luby,M.,Rasmussen,J.E.,2001.A scalable and reliable paradigm for media on demand.IEEE Computer,34(9):40-45. [4]Hu,A.,2001.Video-on-Demand Broadcasting Protocols:A Comprehensive Study.Proc.IEEE Infocom.Anchorage,Alaska. [5]Huang,C.,Janakiraman,R.,Xu,L.,2004.Loss-Resilient Media Streaming Using Priority Encoding.Proc.ACM International Conference on Multimedia (MM‘04).New York,USA. [6]Jenka(c),H.,Stockhammer,T.,2005.Asynchronous Media Streaming over Wireless Broadcast Channels.Proc.of International Conference on Multimedia and Expo (ICME).Amsterdam,The Netherlands. [7]Luby,M.,Gemmel,J.,Vicisano,L.,Rizzo,L.,Handley,M.,Crowcroft,J.,2002a.Asynchronous Layered Coding (ALC) Protocol Instantiation.RFC 3450,IETF. [8]Luby,M.,Gemmel,J.,Vicisano,L.,Rizzo,L.,Handley,M.,Crowcroft,J.,2002b.Layered Coding Transport (LCT)Building Block.RFC 3451,IETF. [9]Luby,M.,Vicisano,L.,Gemmel,J.,Handley,M.,Crowcroft,J.,2002c.Forward Error Correction (FEC) Building Block.RFC 3452,IETF. [10]Luby,M.,Watson,M.,Gasiba,T.,Stockhammer,T.,Xu,W.,2006.Raptor Codes for Reliable Download Delivery in Wireless Broadcast Systems.Proc.Consumer and Communications Networking Conference (CCNC).Las Vegas,NV,USA. [11]Paila,T.,Luby,M.,Lehtonen,R.,Roca,V.,Walsh,R.,2004.FLUTE-File Delivery over Unidirectional Transport.RFC 3926,IETF. [12]Peltotalo,J.,Peltotalo,S.,Harju,J.,2005.Analysis of the FLUTE Data Carousel.Proc.10th EUNICE Open European Summer School.Colmenarejo,Spain. [13]Shokrollahi,A.,2003.Raptor Codes.Tech.Rep.DR2003-06-001,Digital Fountain. [14]TM-CBMS1361,2005.Proposal for Simulations for Evaluation of Application Layer FEC for File Delivery. [15]Xu,L.,2001.Efficient and Scalable on-Demand Data Streaming Using UEP Codes.Proc.ACM International Conference on Multimedia (MM‘01).Ottawa,Ontario,Canada.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号