首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
自旋极化电流从铁磁金属注入到半导体的主要障碍是铁磁体和半导体电导率的不匹配。但最近研究结果表明可以通过运用适当的方法来克服这个困难。我们基于自旋场效应晶体管的模型及Landauer-Buttiker公式,求得电子通过半导体异质结的电导,得出了自旋电子器件中极化电荷的输运特性。  相似文献   

2.
研究了双磁垒量子结构中,磁场强度和偏压大小对电子自旋极化输运的影响。结果表明:零偏压下,电子在反平行等强磁垒结构中输运不会产生自旋极化;电子传输的阈值能量随磁场强度或偏置电压的增大而增大;在一定的磁场强度和偏压大小下,比较由半导体InAs和GaAs两类材料构成的量子结构中电子输运自旋极化度,发现它们的电子输运自旋极化度都随入射能量的增大而呈振荡衰减趋势,朗德有效因子高的InAs材料比GaAs的自旋极化度高出一个数量级。  相似文献   

3.
利用散射矩阵方法研究了双磁势垒结构中二维电子气的自旋极化输运性质.结果表明:电子的自旋极化输运性质与磁场构型、入射电子的能量、入射电子的波矢和外加偏置电压有关.在双磁势垒的磁场结构中只有两磁势垒不对称时,自旋向上和自旋向下的电子的传输概率才发生分离,电子隧穿不对称双磁势垒结构表现出自旋过滤效应.  相似文献   

4.
从空间调制微分反射光谱、介观电路的量子力学处理、量子点和DNA的量子输运性质、量子点的自旋特性四个方面介绍了冯金福教授开展的在半导体电子输运领域所做的工作.  相似文献   

5.
从理论上导出了自旋与p轨道耦合效应使能带分裂的具体表达式,阐明了能带分裂的物理机理,讨论了自旋轨道耦合效应使价带顶分裂后能带结构的特征。其结果有助于更深刻的理解自旋轨道耦合引起能带分裂的机理,对研究半导体光学选择定择、输运性质及应变量子阱中能带的分裂也提供了重要的理论基础。  相似文献   

6.
基于杂化磁调制量子结构,我们从理论上提出了一电子自旋过滤器,并研究了其自旋输运性质.实验上,其可以通过在半导体异质结表面沉积磁化方向不同的铁磁条带形成.通过对真实InAs 材料系统的计算,发现这种系统具有很强的电子自旋极化效应,其自旋极化度在共振时几乎达到100%.因此,该结构可以用于电子自旋过滤器.  相似文献   

7.
研究一束自旋极化电子在准一维系统中的榆运,输运电子经过一个势阱和SOI共同作用的散射区.研究发现经过散射后电子自旋翻转的概率与费米能廓、势阱的深度Vo、自旋轨道耦合的强度λR以及各通道的能级Ej,并且翻转概率具有周期振荡特性,即随散射区的长度呈周期性变化.  相似文献   

8.
研究了考虑Rashba自旋轨道耦合的任意正多边形量子环链的自旋输运性质.当不考虑Rashba自旋轨道耦合时,量子环链中电子的透射电导不发生自旋极化和翻转;当考虑Rashba自旋轨道耦合时,Rashba自旋轨道耦合可以控制量子环链中电导的极化.点连接的量子环链透射电导存在奇偶震荡现象,线连接的量子环链透射电导的极小值不随链长度变化.  相似文献   

9.
提出了复合磁垒的概念并研究了复合磁垒纳米结构中电子的隧穿输运性质.对照相应的非复合磁垒结构,这种磁纳米结构大大增强了电子的波矢滤波特性.当考虑电子的自旋与非均匀磁场的相互作用,这种磁垒纳米结构具有很强的电子自旋极化效应.  相似文献   

10.
提出了复合磁垒的概念并研究了复合磁垒纳米结构中电子的隧穿输运性质.对照相应的非复合磁垒结构, 这种磁纳米结构大大增强了电子的波矢滤波特性.当考虑电子的自旋与非均匀磁场的相互作用,这种磁垒纳米结构具有很强的电子自旋极化效应.  相似文献   

11.
提出了一种连续变量的纠缠相干态即单模激发纠缠相干态(SMEECSs),其形式为,︱ψ±(α,m)〉=N±(α,m)α-+m(︱α,α〉+︱-α,-α〉),m=(1,2,3,…),并研究SMEECSs的数学性质以及通过激光-原子的相互作用和量子测量来制备SMEECSs这个态的方法。  相似文献   

12.
采用全量子理论和数值计算方法,研究了初始处于SU(2)相干态的双模腔场与一个V型三能级原子共振相互作用系统的光场差压缩特性.讨论了在没有对原子进行态选择测量、直接对原子进行态选择测量和应用经典微波场并对原子进行态选择测量的三种情况下,两个腔模总光子数、配分参量、耦合系数和原子初态对光场双模差压缩的影响.结果表明:原子初始处于低能级或增加两个腔模的总光子数,差压缩平均程度明显地增强;减小配分参量,差压缩平均程度明显地减弱;当两个耦合系数相同并对原子进行态选择测量时,差压缩平均程度不随时间改变.  相似文献   

13.
以中乐油2号和蓉油11号油菜为材料,通过盆栽试验,研究渍害胁迫及恢复进程中油菜幼苗叶片光系统Ⅱ(PSⅡ)光化学特性的变化.结果表明:随着渍害胁迫的加剧,两品种油菜叶片初始荧光(F0)、非光化学淬灭系数(qN)不断上升,最大荧光(Fm)、PSⅡ最大光化学量子产量(Fv/Fm)、PSⅡ实际光化学量子产量(Yield)、表观光合电子传递速率(ETR)、光化学淬灭系数(qP)不断下降,说明随着渍害胁迫的加剧,PSⅡ部分反应中心受到破坏,光合电子传递受阻,光能转换效率下降,发生明显光抑制;从第13d起进行恢复处理,所有叶绿素荧光参数均有所恢复,但仍未达到对照水平.可见,当渍害胁迫超出了油菜机体自我调节的阈值时,油菜叶片的部分光合机构发生不可逆的破坏,最终影响油菜的正常生长.  相似文献   

14.
氨系水相优化合成CdTe量子点的研究   总被引:1,自引:0,他引:1  
用巯基丙酸(MPA)作稳定剂,无需氮气或氩气保护下,在氨系水相中通过超声合成CdTe量子点的前驱体,前驱体经水浴回流制备粒径可调的CdTe量子点.通过荧光和吸收光谱、透射电子显微镜和红外光谱对产物进行了表征.试验表明:反应时间、温度、pH值、Cd^2+、HTe^-、MPA的物质的量比,对量子点的粒径大小、粒径分布和粒径生长速度均有很大的影响.n(HTe^-):n(Cd^2+):n(MPA):1:3:6,pH=9.8条件下合成前驱体,在92+1℃水浴下回流,可以快速获得长波长、高荧光的CdTe量子点,合成的量子点储存6个月后经稳态/瞬态荧光光谱仪测定,外量子效率仍为16.45%.  相似文献   

15.
采用电磁诱导透明技术可以实现慢光速,其对应正常色散(dn/dω〉0或d ng/dω〉0),而采用电磁诱导吸收技术可以实现超光速甚至负群速,其对应反常色数(dn/dω〈0或d ng/dω〈0).目前慢光速和超光速的研究已成为相对论、量子力学、电子学和信息论等交叉学科的研究热点.  相似文献   

16.
由Adachi等人提出的诱骗态量子密码分配协议已经被证明是安全的,而且在现有技术下能够实现.它的两个重要的特点是,能够达到更长的安全传输距离以及实验设计上更容易操作.在这篇文章中,我们最早将两路经典通讯应用到该协议中,经过计算表明,安全传输距离可以被提高20公里,这使得该协议更加的实用化.  相似文献   

17.
用矩阵表示量子信息中的量子态便于进行量子并行计算。本文以矩阵及变换理论为基础,对纯态、混合态、缠绕态及量子相干叠加态的矩阵表示进行分析,所得结果有助于加深理解量子理论。  相似文献   

18.
根据有效粒子数分辨的量子主方程的方法,研究了并联耦合双量子点系统电子的全计数统计。当量子点间的隧穿耦合强度与量子点电极的耦合强度的数值接近时,量子相干性,即系统约化密度矩阵的非对角元开始对系统的电子全计数统计特性起作用。特别是,量子点之间的隧穿耦合强度相对越弱,系统约化密度矩阵的非对角元对系统的电子全计数统计影响就越加明显;同时,量子点之间的隧穿耦合强度小到一定程度时,系统约化密度矩阵的非对角元对系统的电子全计数统计影响将会趋于稳定。  相似文献   

19.
在近20年,介观物理已经变成凝聚态物理中最引人瞩目的领域。在介观结构中的电子输运验证了量子的本质。在电子的量子波导理论基础上提出了一个在狭窄的介观结构中对空穴输运的一维量子波导理论,并把这个理论方法应用在量子干涉装置中,得出了一个在狭窄线路中的空穴输运的解析理论。  相似文献   

20.
Navinder Singh 《Resonance》2010,15(11):988-1002
A short introduction to the quantum transport in mesoscopic systems is given, and various regimes of quantum transport such as diffusive, ballistic, and adiabatic are explained. The effect of interactions and inelastic scattering along with the characteristic coherent effects of mesoscopic systems give interesting new mesoscopic effects, such as CoulombBlockade and Kondo Resonance. The basic physics of these phenomena is explained in simple language. In the end, some current research problems in this field are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号